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Abstract

Capturing concepts’ interrelations is a fundamental of natural language understanding. It constitutes a bridge
between two historically separate approaches of artificial intelligence: the use of symbolic and distributed
representations. However, tackling this problem without human supervision poses several issues, and unsuper-
vised models have difficulties echoing the expressive breakthroughs of supervised ones. This thesis addresses
two supervision gaps we identified: the problem of regularization of sentence-level discriminative models and
the problem of leveraging relational information from dataset-level structures.

The first gap arises following the increased use of discriminative approaches, such as deep neural network
classifiers, in the supervised setting. These models tend to collapse without supervision. To overcome this
limitation, we introduce two relation distribution losses to constrain the relation classifier into a trainable
state. The second gap arises from the development of dataset-level (aggregate) approaches. We show that
unsupervised models can leverage a large amount of additional information from the structure of the dataset,
even more so than supervised models. We close this gap by adapting existing unsupervised methods to capture
topological information using graph convolutional networks. Furthermore, we show that we can exploit the
mutual information between topological (dataset-level) and linguistic (sentence-level) information to design a
new training paradigm for unsupervised relation extraction.
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Notation

Most of this thesis is formatted in one and a half columns, which means that a large right margin is filled with
complementary material. This includes figures, tables and algorithms when space allows, but also epigraphs and
marginal notes with supplementary details and comments. The titles of important bibliographical references
are also given in the margin right of their first mention in the section. Some marginal paragraphs are left
unnumbered and provide material about the broadly adjacent passage. When a section seems unclear, we
invite the reader to look for additional information in the margin. For example, while relation algebra is
introduced in Section 1.4.1, we do not expect most readers to be familiar with its notation. As such, we will
systematically provide an interpretation of relation algebra formulae in plain English in unnumbered marginal
paragraphs.

Domain of Variables
𝑥 A scalar
𝒙 A vector, its elements are indexed 𝑥𝑖
𝑿 A matrix, its rows are indexed 𝒙𝑖, its elements 𝑥𝑖𝑗
𝙓 A (three-way) tensor, indexed 𝑿𝑖, 𝒙𝑖𝑗, 𝑥𝑖𝑗𝑘
x A random variable (sometimes X to avoid confusion)
𝐱 A random vector
ℝ The set of real numbers
ℝ𝑛 The set of real-valued vectors of length 𝑛

ℝ𝑛×𝑚 The set of real-valued matrices with 𝑛 rows and 𝑚 columns
𝐵𝐴 The set of functions from 𝐴 to 𝐵, in particular 2𝐴 denotes the power set of 𝐴

To describe the set of real-valued vectors with the same number of elements as a set 𝐴, we abuse the morphism
from the functions ℝ𝐴 to the vectors ℝ|𝐴| and simply write 𝒙 ∈ ℝ𝐴 to denote that 𝒙 is a vector with |𝐴|
elements.

Relation Algebra
Relation algebra is described in more detail in Section 1.4.1.

𝟎 Empty relation
𝟏 Complete relation
𝑰 Identity relation
̄𝑟 Complementary relation
̆𝑟 Converse relation (reversed orientation), when applied to a surface form: (born in

• Relation composition

Probability and Information Theory
𝑃(x), 𝑄(x) Probability distribution over x, by default we heavily overload 𝑃 (as is customary), when con-

fusion is possible we disambiguate by using 𝑄
̂𝑃 (x) Empirical distribution over x (as defined by the dataset)

x ⟂⟂ y ∣ z Conditional independence of x and y given z
x ⟂̸⟂ y x and y are not independent
𝒰(𝑋) Uniform distribution over the set 𝑋
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N (𝜇, 𝜎2) Normal distribution of mean 𝜇 and variance 𝜎2 (also used for the multivariate case)
H(x) Shannon entropy of the random variable x, H(x, y) denotes the joint entropy

H(x ∣ y) Conditional entropy of x given y
H𝑄(𝑃 ) Cross-entropy of 𝑃 relative to 𝑄
I(x; y) Mutual information of x and y

pmi(𝑥, 𝑦) Pointwise mutual information of events 𝑥 and 𝑦
Dkl(𝑃 ‖ 𝑄) Kullback–Leibler divergence from 𝑄 to 𝑃
Djsd(𝑃 ‖ 𝑄) Jensen–Shannon divergence between 𝑃 and 𝑄
𝑊1(𝑃 ,𝑄) 1-Wasserstein distance between 𝑃 and 𝑄

Machine Learning
𝜎(𝑥) Logistic sigmoid 𝜎(𝑥) = 1 ∕ (1 + exp(−𝑥))

ReLU(𝑥) Rectified linear unit ReLU(𝑥) = max(0, 𝑥), we use ReLU to refer to the ReLU activation
applied to half of the units (see Section 1.3.3.2)

ℒ Loss (to be minimized)
𝐽 Objective (to be maximized)

−→
𝐹1,

←→
𝐹1 , ↼⇁𝐹1 Directed, undirected and half-directed 𝐹1 measures (see Section 2.3.1)

Graph Operations
𝜀1(𝑎) Source vertex of the arc 𝑎
𝜀2(𝑎) Target vertex of the arc 𝑎
𝜌(𝑎) Relation conveyed by the arc 𝑎
𝜍(𝑎) Sentence corresponding to the arc 𝑎
𝑁(𝑒) Vertices neighboring the vertex 𝑒
ℐ(𝑒) Arcs incident to the vertex 𝑒
𝒩(𝑎) Arcs neighboring the arc 𝑎

Other Operations
⊙ Element-wise (Hadamard) product
∗ Convolution
⋈ Natural join
×𝐴 Pullback with common codomain 𝐴
𝛿𝑖,𝑗 Kronecker’s delta, 1 if 𝑖 = 𝑗, 0 otherwise
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Introduction

The world is endowed with a structure, which enables us to understand
it. This structure is most apparent through repetitions of sensory experi-
ences. Sometimes, we can see a cat, then another cat. Entities emerge from
the repetition of catness we experienced. From time to time, we can also
observe a cat inside a cardboard box or a person inside a room. Relations Relations—albeit in a more restric-

tive sense—are one of Aristotle’s ten
praedicamenta, the categories of ob-
jects of human apprehension (Gracia
and Newton 2016).

are the explanatory device underlying this second kind of repetition. A
relation governs an interaction between two or more objects. We assume
an inside relation exists because we repeatedly experienced the same in-
teraction between a container and its content. The twentieth century saw
the rise of structuralism, which regarded the interrelations of phenomena
as more enlightening than the study of phenomena in isolation. In other
words, we might better understand what a cat is by studying its rela-
tionships to other entities instead than by listing the characteristics of
catness. From this point of view, the concept of relation is crucial to our
understanding of the world.

The Cheshire Cat from Tenniel (1889)
provides you with an experience of cat-
ness.

Natural languages capture the underlying structure of these repetitions
through a process we do not fully understand. One of the endeavors of arti-
ficial intelligence, called natural-language understanding, is to mimic this
process with definite algorithms. Since the aforementioned goal is still elu-
sive, we strive to model only parts of this process. This thesis, consequent
to the structuralist perspective, focuses on extracting relations conveyed
by natural language. Assuming natural language is representative of the
underlying structure of sensory experiences,1 we should be able to capture 1 The repetitions of sensory experi-

ences and words need not be alike. We
are only concerned with the possibil-
ity of resolving references here. Even
though our experiences of trees are
more often than not accompanied with
experiences of bark, the words “tree”
and “bark” do not co-occur as often in
natural language utterances. However,
their meronymic relationship is under-
standable both through experiences of
trees and inter alia through the use of
the preposition “of” in textual men-
tions of barks.

relations through the exploitation of repetitions alone—i.e. in an unsuper-
vised fashion.

Extracting relations can help better our understanding of how lan-
guages work. For example, whether languages can be understood through
a small amount of data is still a somewhat open question in linguistics. The
poverty of the stimulus argument states that children should not be able
to acquire proficiency from being exposed to so little data. It is one of the
major arguments in favor of the controversial universal grammar theory.
Capturing relations from nothing more than a small number of natural
language utterances would be a step towards disproving the poverty of
the stimulus claim.
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This kind of incentive for tackling the relation extraction problem
stems from an episteme2 endeavor. However, most of the traction for this 2 From the Ancient Greek ἐπιστήμη:

knowledge, know-how.problem stems from a techne3 undertaking. The end goal is to build a
3 From the Ancient Greek τέχνη: craft,
art.

system with real-world applications. Under this perspective, the point of
artificial intelligence is to replace or assist humans on specific tasks. Most
tasks of interest necessitate some form of technical knowledge (e.g. diag-
nosing a disease requires knowledge of the relationship between symptoms
and diseases). The principal vector of knowledge is language (e.g. through
education). Thus, knowledge acquisition from natural language is funda-
mental for systems purposing to have such applications.

For an analysis of the real-world impact of systems extracting knowl-
edge from text, refer to Alex et al. (2008). Their article shows that human Alex et al., “Assisted curation: does

text mining really help?” psb 2008curators can use a machine learning system to better extract a set of
protein–protein interactions from biomedical literature. This is clearly a
techne endeavor: the protein–protein interactions are not new knowledge,
they are already published; however, the system improves the work of the
human operator.

“Once the theory of meaning is
sharply separated from the theory of
reference, it is a short step to rec-
ognizing as the business of the the-
ory of meaning simply the synonymy
of linguistic forms and the analyticity
of statements; meanings themselves,
as obscure intermediary entities, may
well be abandoned.

— Willard Van Orman Quine,
“Main Trends in Recent Phi-
losophy: Two Dogmas of Em-
piricism” (1951)

This example of application is revealing of the larger problem of infor-
mation explosion. The quantity of published information has grown relent-
lessly throughout the last decades. Machine learning can be used to filter
or aggregate this large amount of data. In this case, the object of interest
is not the text in itself but the conveyed semantic, its meaning. This begs
the question: how to define the meaning we are seeking to process? Indeed,
foundational theories of meaning are the object of much discussion in the
philosophy community (Speaks 2021). While some skeptics, like Quine, do
not recognize meaning as a concept of interest, they reckon that a mini-
mal description of meaning should at least encompass the recognition of
synonymy. This follows from the above discussion about the recognition of
repetitions: if is a repetition of , we should be able to say that and

are synonymous. In practice, this implies that we ought to be able to
extract classes of linguistic forms with the same meaning or referent—the
difference between the two is not relevant to our problem.

Paris (Q162121) is neither capital of
France, nor prince of Troy, it is the
genus of the true lover’s knot plant.
The capital of France would be Paris
(Q90) and the prince of Troy, son of
Priam, Paris (Q167646). Illustration
from Redouté (1802).

While the above discussion of meaning is essential to define our objects
of interest, relations, it is important to note that we work on language; we
want to extract relations from language, not from repetitions of abstract
entities. Yet, the mapping between linguistic signifiers and their meaning
is not bijective. We can distinguish two kinds of misalignment between
the two: either two expressions refer to the same object (synonymy), or
the same expression refers to different objects depending on the context
in which it appears (homonymy). The first variety of misalignment is the
most common one, especially at the sentence level. For example, “Paris is
the capital of France” and “the capital of France is Paris” convey the same
meaning despite having different written and spoken forms. On the other

https://psb.stanford.edu/psb-online/proceedings/psb08/alex.pdf
https://psb.stanford.edu/psb-online/proceedings/psb08/alex.pdf
https://www.wikidata.org/wiki/Q162121
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q167646
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hand, the second kind is principally visible at the word level. For example,
the preposition “from” in the phrases “retinopathy from diabetes” and
“Bellerophon from Corinth” conveys either a has effect relationship or
a birthplace one. To distinguish these two uses of “from,” we can use
relation identifiers such as P1542 for has effect and P19 for birthplace. An
example with entity identifiers—which purpose to uniquely identify entity
concepts—is provided in the margin of page xx.

Throughout this thesis, we will be us-
ing Wikidata identifiers (https://www.
wikidata.org) to index entities and re-
lations. Entities identifiers start with
Q, while relation identifiers start with
P. For example, Q35120 is an entity.While the preceding discussion makes it seems as if all objects can

fit nicely into clearly defined concepts, in practice, this is far from the
truth. Early in the knowledge-representation literature, Brachman (1983)
remarked the difficulty to clearly define even seemingly simple relations
such as instance of (P31). This problem ensues from the assumption that
synonymy is transitive, and therefore, induces equivalence classes. This
assumption is fairly natural since it already applies to the link between
language and its references: even though two cats might be very unlike
one another, we still group them under the same signifier. However, lan-
guage is flexible. When trying to capture the entity “cat,” it is not entirely
clear whether we should group “a cat with the body of a cherry pop tart”
with regular experiences of catness.4 To circumvent this issue, some re- 4 The reader who would describe this

as a cat is invited to replace various
body parts of this imaginary cat with
food items until they stop experiencing
catness.

cent works (Han et al. 2018) on the relation extraction problem define
synonymy as a continuous intransitive association. Instead of grouping
linguistic forms into clear-cut classes with a single meaning, they extract
a similarity function defining how similar two objects are.

Now that we have conceptualized our problem, let us focus on our
proposed technical approach. First, to summarize, this thesis focus on
unsupervised relation extraction from text.5

5 We use text as it is the most def-
inite and easy-to-process rendition of
language.

Since relations are objects
capturing the interactions between entities, our task is to find the relation
linking two given entities in a piece of text. For example, in the three
following samples where entities are underlined:

Ariadne waking on the shore of Naxos
where she was abandoned, wall paint-
ing from Herculaneum in the collection
of the British Museum (100 bce–100
ce). The ship in the distance can be
identified as the ship of Theseus, for
now. Depending on the philosophical
view of the reader (Q1050837), its iden-
tity as the ship of Theseus might not
linger for long.

Megrez𝑒1
is a star in the northern circumpolar constellation

of Ursa Major𝑒2
.

Posidonius𝑒1
was a Greek philosopher, astronomer, historian,

mathematician, and teacher native to Apamea, Syria𝑒2
.

Hipparchus𝑒1
was born in Nicaea, Bithynia𝑒2

, and probably
died on the island of Rhodes, Greece.

we wish to find that the last two sentences convey the same relation—in
this case, 𝑒1 born in 𝑒2 (P19)—or at the very least, following the discussion
in the preceding paragraph about the difficulty of defining clear relation
classes, we wish to find that the relations conveyed by the last two sam-
ples are closer to each other than the one conveyed by the first sample. We
propound that this can be performed by machine learning algorithms. In
particular, we study how to approach this task using deep learning. While

https://www.wikidata.org/wiki/Property:P1542
https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org
https://www.wikidata.org
https://www.wikidata.org/wiki/Q35120
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q1050837
https://www.wikidata.org/wiki/Property:P19
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relation extraction can be tackled as a standard supervised classification
problem, labeling a dataset with precise relations is a tedious task, espe-
cially with technical documents such as the biomedical literature studied
by Alex et al. (2008). Another problem commonly encountered by anno-
tators is the question of applicability of a relation, for example, should
“the country𝑒1

’s founding father𝑒2
” be labeled with the product–producer

relation?6 We now discuss how deep learning became the most promising 6 The annotator of this sentence
piece in the SemEval 2010 Task 8
dataset (Section C.6) decided that
it does convey the product–producer
relation. The difficulty of applying
a definition is an additional argu-
ment in favor of similarity-function-
based approaches over classification
approaches.

technique to tackle natural language processing problems.

The primary subject matter of the relation extraction problem is lan-
guage. Natural language processing (nlp) was already a prominent re-
search interest in the early years of artificial intelligence. This can be seen
from the episteme viewpoint in the seminal paper of Turing (1950). This

Turing, “Computing Machinery and
Intelligence” Mind 1950

paper proposes mastery of language as evidence of intelligence, in what is
now known as the Turing test. Language was also a subject of interest for
techne objectives. In January 1954, the Georgetown–ibm experiment tried

“Five, perhaps three years hence,
interlingual meaning conversion by
electronic process in important func-
tional areas of several languages may
well be an accomplished fact.

— Leon Dostert, “701 translator”
ibm press release (1954)

to demonstrate the possibility of translating Russian into English using
computers (Dostert 1955). The experiment showcased the translation of
sixty sentences using a bilingual dictionary to translate words individu-
ally and six kinds of grammatical rules to reorder tokens as needed. Initial
experiments created an expectation buildup, which was followed by an un-
avoidable disappointment, resulting in an “ai winter” where research fund-
ings were restricted. While translating word-by-word is somewhat easy in
most cases, translating whole sentences is a lot harder. Scaling up the set
of grammatical rules in the Georgetown–ibm experiment proved imprac-
tical. This limitation was not a technical one. With the improvement of
computing machinery, more rules could have easily been encoded. One of
the issues identified at the time was the commonsense knowledge problem
(McCarthy 1959). In order to translate or, more generally, process a sen-
tence, it needs to be understood in the context of the world in which it
was uttered. Simple rewriting rules cannot capture this process.7

7 Furthermore, grammar is still an ac-
tive area of research. We do not per-
fectly understand the underlying real-
ity captured by most words and are
thus unable to write down complete
formal rules for their usages. For ex-
ample, Tyler and Evans (2001) is a
43 pages cognitive linguistics paper at-
tempting to explain the various uses
of the English preposition “over.” This
is one of the arguments for unsu-
pervised approaches; we should avoid
hand-labeled datasets if we want to
outperform the human annotators.

In order
to handle whole sentences, a paradigm shift was necessary.

A first shift occurred in the 1990s with the advent of statistical nlp
(S. Abney 1996). This evolution can be partly attributed to the increase of
computational power, but also to the progressive abandon of essentialist
linguistics precepts8 in favor of distributionalist ones. Instead of relying on 8 Noam Chomsky, one of the most—

if not the most—prominent essentialist
linguists, considers that manipulating
probabilities of text excerpt is not the
way to acquire a better understand-
ing of language. Following the suc-
cess of statistical approaches, he only
recognized statistical nlp as a techne
achievement. For an answer to this po-
sition, see S. Abney (1996) and Norvig
(2011).

human experts to input a set of rules, statistical approaches leveraged the
repetitions in large text corpora to infer these rules automatically. There-
fore, this progression can also be seen as a transition away from symbolic
artificial intelligence models and towards statistical ones. Coincidently, the
relation extraction task was formalized at this time. And while the ear-
liest approaches were based on symbolic models using handwritten rules,
statistical methods quickly became the norm after the 1990s. However,
statistical nlp models still relied on linguistic knowledge. The relation

https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf


xxiii

extraction systems were usually split into a first phase of hand-specified
linguistic features extraction and a second phase where a relation was
predicted based on these features using shallow statistical models. “White horse is not horse.

— “Gongsun Longzi” Chap-
ter 2 (circa 300 bce)

﹁
白
馬
非
馬
﹂

A well-known paradox in early
Chinese philosophy illustrating the
difficulty of clearly defining the
meaning conveyed by natural lan-
guages. This paradox can be
resolved by disambiguating the
word “horse.” Does it refers to
the “whole of all horse kind”
(the mereological view) or to
“horseness” (the Platonic view)?
The mereological interpretation
was famously—and controversly—
introduced by Hansen (1983), see
Fraser (2007) for a discussion of
early Chinese ontological views of
language.

A second shift occurred in the 2010s when deep learning approaches
erased the split between feature extraction and prediction. Deep learning
models are trained to directly process raw data, in our case text excerpts.
To achieve this feat, neural networks able to approximate any function are
used. However, the downside of these models is that they usually require
large amounts of labeled data to be trained. This is a particularly salient
problem throughout this thesis since we deal with an unsupervised prob-
lem. As the latest and most efficient technique available, deep learning
proved to be a natural choice to tackle relation extraction. However, this
natural evolution came with serious complications that we try to address
in this manuscript.

Frontispiece of the OuCuiPian Library
by Chevalier (1990). A different kind
of cooking with letters.

The evolution of unsupervised relation extraction methods closely fol-
lows the one of nlp methods described above. The first deep learning ap-
proach was the one of Marcheggiani and Titov (2016). However, only part
of their model relied on deep learning techniques, the extraction of features
was still done manually. The reason why feature extraction could not be
done automatically as is standard in deep learning approaches is closely
related to the unsupervised nature of the problem. Our first contribution
is to propose a technique to enable the training of unsupervised fully-
deep learning relation extraction approaches. Afterward, different ways
to tackle the relation extraction task emerged. First, recent approaches
use a softer definition of relations by extracting a similarity function in-
stead of a classifier. Second, they consider a broader context: instead of
processing each sentence individually, the global consistency of extracted
relations is considered. However, this second approach was mostly limited
to the supervised setting, with limited use in the unsupervised setting. Our
second contribution concerns using this broader context for unsupervised
relation extraction, in particular for approaches defining a similarity func-
tion. During the preparation of the thesis, we also published an article on
multimodal semantic role labeling with Syrielle Montariol and her team
(Montariol et al. 2022); since it is somewhat unrelated to unsupervised
relation extraction, we do not include it in this thesis. Syrielle Montariol,* Étienne Simon,*

Arij Riabi, Djamé Seddah. “Fine-
tuning and Sampling Strategies for
Multimodal Role Labeling of Enti-
ties under Class Imbalance” con-
straint 2022

* Equal contributions

We now describe the organization of the thesis. Chapter 1 provides
the necessary background for using deep learning to tackle the relation
extraction problem. In particular, we focus on the concept of distributed
representation, first of language, then of entities and relations. Chapter 2
formalizes the relation extraction task and presents the evaluation frame-
work and relevant related works. This chapter focuses first on supervised
relation extraction using local information only, then on aggregate extrac-
tion, which exploits repetitions more directly, before delving into unsu-

https://aclanthology.org/2022.constraint-1.7
https://aclanthology.org/2022.constraint-1.7
https://aclanthology.org/2022.constraint-1.7
https://aclanthology.org/2022.constraint-1.7
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pervised relation extraction. In Chapter 3, we propose a solution to train
deep relation extraction models in an unsupervised fashion. The problem
we tackle is a stability problem between a powerful universal approximator
and a weak supervision signal transpiring through the repetitions in the
data. This chapter was the object of a publication at acl (Simon et al.
2019). Chapter 4 explores the methods to exploit the structure of the data Étienne Simon, Vincent Guigue, Ben-

jamin Piwowarski. “Unsupervised In-
formation Extraction: Regularizing
Discriminative Approaches with Rela-
tion Distribution Losses” acl 2019

more directly through the use of graph-based models. In particular, we

The work presented in Chapter 4 still
needs to be polished with more experi-
mental work and is yet unpublished at
the time of writing.

draw parallels with the Weisfeiler–Leman isomorphism test to design new
methods using topological (dataset-level) and linguistic (sentence-level)
features jointly. Appendix A contains the state-mandated thesis summary
in French. The other appendices provide valuable information that can
be used as references. We strongly encourage the reader to refer to them
for additional details on the datasets (Appendix C), but even more so for
the list of assumptions made by relation extraction models (Appendix B).
These modeling hypotheses are central to the design of unsupervised ap-
proaches. In addition to their definition and reference to the introduc-
ing section, Appendix B provides counterexamples, which might help the
reader understand the nature of these assumptions.

https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133


25

Chapter 1

Context: Distributed Representations

“Meaning is what essence becomes
when it is divorced from the object of
reference and wedded to the word.

— Willard Van Orman Quine,
“Main Trends in Recent Phi-
losophy: Two Dogmas of Em-
piricism” (1951)

Quine was skeptical that facts
about the meanings of linguistic
expressions existed, for a critical
response to his position see Soames
(1997).

“ In scientific discourse what
matters are the solid facts of a
matter, not elegance.

— Wang Chong, “Lunheng”
Chapter 85 (circa. 80)

﹁
論
貴
是
而
不
務
華
﹂Adapted from the translation of

Harbsmeier (1989), Chong pro-
motes truth over elegance despite
the influence of early Chinese skep-
ticism.

Language conveys meaning. Thus, it should be possible to explicitly map
a text to its semantic content. The research reported in this thesis seeks to
algorithmically extract meaning conveyed by language using deep learning
techniques from the information extraction and natural language process-
ing (nlp) fields. We focus on the task of relation extraction, in which we
seek to extract the semantic relation conveyed by a sentence. For example,
given the sentence “Paris is the capital of France,” we seek to extract the
relation “capital of.” To build a formal representation of relations, we use
knowledge bases. In their simplest form, knowledge bases encode knowl-
edge as a set of facts, which take the form (entity, relation, entity) such as
(Paris, capital of,France). Like natural languages, knowledge bases pur-
pose to convey meaning9 but in a structure that is readily manipulable

9 Knowledge bases usually focus on
knowledge which can be seen as a
subset of all possible meanings. For
example, facts like (I, want, ice cream)
are not usually encoded in knowl-
edge bases. However, they theoretically
could. To be precise, throughout this
thesis we’ll be using knowledge bases
in two ways:

• as a basic theoretical structured
representation of meaning,

• as a practical datasets to evalu-
ate algorithms on.

This means that algorithms tested
on existing knowledge bases are only
tested on a subset of possible mean-
ings. However, when we discuss the
representation of knowledge base facts,
note that this can be generalized to
any meaningful facts expressible in the
knowledge base framework.

by algorithms. However, most knowledge—like this thesis—comes in the
form of text. There lies the usefulness of the relation extraction task on
which we focus. By “translating” natural language into knowledge bases,
we seek to make more knowledge available to algorithms.

In this chapter, we focus on the two kinds of data we deal with in
this thesis, namely text and knowledge bases. Subsequent chapters will
deal with the extraction of knowledge base facts from text. In Section 1.1,
we begin by positioning this task within the larger historical context by
focusing on how the fields of machine learning, nlp and information ex-
traction developed. Before delving into the specific algorithms for rela-
tion extraction, we must first define how to process language and how
to represent semantic information in a way that can be manipulated by
machine learning algorithms. In particular, we seek to obtain a distributed
representation—which we define in the next section—of both language
and knowledge bases since deep learning algorithms cannot directly work
with non-distributed representations. We first inspect the representation
of words in Section 1.2 before exploring how to process whole sentences in
Section 1.3. Finally, Section 1.4 focuses on knowledge bases by first giv-
ing a formal definition before studying methods for extracting distributed
representations from them.

1.1 Historical Development
In this section, we expose the rationale for applying deep learning to re-
lation extraction, how the related fields appeared and why the task is
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relevant. Since algorithms were first given to train generic deep neural net-
works (Glorot et al. 2011; Geoffrey E. Hinton et al. 2006), most problems
tackled by machine learning can now be approached with deep learning
methods. Over the last few years, deep learning has been very success-
ful in a variety of tasks such as image classification (Krizhevsky et al.
2012), machine translation (Cho et al. 2014), audio synthesis (van den
Oord et al. 2016), etc. This is why it is not surprising that deep learning is
now applied to more tasks traditionally tackled by other machine learning
methods, such as in this thesis, where we apply it to relation extraction.

From a historical point of view, machine learning—and hence deep
learning—are deeply anchored in empiricism. Empiricism is the epistemo-
logical paradigm in which knowledge is anchored in sensory experiences
of the world, which are called empirical evidence. This is not to say that
there are no theoretical arguments motivating the use of certain machine
learning methods; the universal approximation theorems (Cybenko 1989;
Leshno et al. 1993) can be seen as a theoretical argument for deep learn-
ing. But in the end, a machine learning method draws its legitimacy from
the observation that they perform strongly on a real dataset. This is in
stark contrast to the rationalist paradigm, which posits that knowledge
comes primarily from reason.

This strong leaning on empiricism can also be seen in nlp. nlp comes
from the externalist approach to linguistic theorizing, focusing its anal-
yses on actual utterances. A linguistic tool that externalists often avoid
while being widely used by other schools is elicitation through prospective
questioning: “Is this sentence grammatical?” Externalists consider that
language is acquired through distributional properties of words and other
constituents;10 and study these properties by collecting corpora of nat- 10 In other words, language is acquired

by observing empirical co-occurrences:
where words go and where they don’t
in actual utterances tell us where they
can go and where they can’t.

urally occurring utterances. The associated school of structural linguis-
tics inscribes itself into the broader view of structuralism, the belief that
phenomena are intelligible through a concept of structure that connects
them together, the focus being more on these interrelations instead of
each individual object. In the case of linguistics, this view was pioneered
by Ferdinand de Saussure which stated in its course in general linguistics:

“La langue est un système dont
toutes les parties peuvent et doivent
être considérées dans leur solidarité
synchronique.

— Ferdinand de Saussure, Cours
de linguistique générale (1916)

Language is a system whose parts can and must all be consid-
ered in their synchronic11 solidarity.

11 Saussure makes a distinction be-
tween synchronic—at a certain point in
time—and diachronic—changing over
time—analyses. This does not mean
that the meaning of a word is not in-
fluenced by its history, but that this
influence is entirely captured by the
relations of the word with others at
the present time and that conditioned
on these relations, the current meaning
of the word is independent of its past
meaning.

— Ferdinand de Saussure, Cours de
linguistique générale (1916)

This train of thought gave rise to distributionalism whose ideas are best
illustrated by the distributional hypothesis stated in Harris (1954):

Distributional Hypothesis: Words that occur in similar contexts convey
similar meanings.

This can be pushed further by stating that a word is solely characterized
by the context in which it appears.

On the artificial intelligence side, deep learning is usually compared
to symbolic approaches. The distinction originates in the way information
is represented by the system. In the symbolic approach, information is
carried by strongly structured representations in which a concept is usu-
ally associated with a single entity, such as a variable in a formula or in
a probabilistic graphical model. On the other hand, deep learning uses
distributed representations in which there is a many-to-many relationship
between concepts and neurons; each concept is represented by many neu-
rons, and each neuron represents many concepts. The idea that mental
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phenomena can be represented using this paradigm is known as connec-
tionism. One particular argument in favor of connectionism is the ability
to degrade gracefully: deleting a unit in a symbolic representation equates
to deleting a concept, while deleting a unit in a distributed representation
merely lowers the precision with which concepts are defined. Note that
connectionism is not necessarily incompatible with a symbolic theory of
cognition. Distributed representations can be seen as a low-level explana-
tion of cognition, while from this point of view, symbolic representation is
a high-level interpretation encoded by distributed representations.12

12 This view on the relation between
distributed and symbolic representa-
tions can be seen in the early neural
networks literature as can be seen in
Geoffrey E Hinton (1986), which is of-
ten cited for its formalization of the
backpropagation algorithm. More re-
cently, Greff et al. (2020) investigate
the binding problem between symbols
and distributed representations.

Furthermore, we can make a distinction on how structured is the kind
of data used. In this thesis, we will especially focus on the relationship
between unstructured text13 and structured data (in the form of knowledge 13 Of course, language does have a

structure. We do not deny the exis-
tence of grammar but merely state that
text is less structured than other struc-
tures studied in this chapter (see Sec-
tion 1.4).

bases). To give a sense of this difference, compare the following text from
the Paris Wikipedia page to facts from the Wikidata knowledge base:

Paris is the capital and most
populous city of France. The
City of Paris is the centre and
seat of government of the region
and province of Île-de-France.

Paris capital of France

Paris located in the adminis-
trative territorial entity Île-de-
France

We use slanted text to indicate a rela-
tional surface form such as “capital of ”
in the fact “Paris capital of France.”

Through this example, we see that both natural languages and knowl-
edge bases encode meaning. To talk about what they encode, we assume
the existence of a semantic space containing all possible meanings. We do
not assume any theory of meaning used to define this space; this allows us
to stay neutral on whether language is ontologically prior to propositional
attitudes and its link with reality or semantically evaluable mental states.
In the same way that different natural languages are different methods
to address this semantic space, knowledge bases seek to refer to the same
semantic space14 with an extremely rigid grammar. 14 Strictly speaking, practical knowl-

edge bases only seek to index a subset
of this space, see note 9 in the margin
of page 25.

Both natural language and knowledge bases are discrete systems. For
both these systems, we can use the distributional hypothesis to obtain
continuous distributed representations. These representations purpose to
capture the semantic as a simple topological space such as a Euclidean
vector space where distance encodes dissimilarity, as shown in Figure 1.1.
Moreover, using a differentiable manifold allows us to train these repre-
sentations through backpropagation using neural architectures.

The question of how to process texts algorithmically has evolved over
the last fifty years. Language being conveyed through symbolic representa-
tions, it is quite natural for us to manipulate them. As such, early machine
learning models strongly relied on them. For a long time, symbolic ap-
proaches had an empirical advantage: they worked better. However, in the
last few years, distributed representations have shown unyielding results,
and most tasks are now tackled with deep learning using distributed rep-
resentations. As an example, this can be seen in the machine translation This transition from rule-based models

to statistical models to neural network
models can also be seen in relation ex-
traction with Hearst (1992, symbolic
rule-based, Section 2.2.1), sift (1998,
symbolic statistical, Section 2.3.4) and
pcnn (2015, distributed neural, Sec-
tion 2.3.6).

task. Early models from the 1950s onward were rule-based. Starting in the
1990s, statistical approaches were used, first using statistics of words then
of phrases. Looking at the Workshop on statistical machine translation
(wmt): at the beginning of the last decade, no neural approaches were used
and the report (Callison-Burch et al. 2010) deplored the disappearance of
rule-based systems, at the end of the decade, most systems were based on
distributed representations (Barrault et al. 2020).15 While this transition 15 To be more precise, most models use

transformers which are a kind of neural
network introduced in Section 1.3.4.

occurred in nlp, knowledge representation has been a stronghold of sym-
bolic approaches until very recently. The research reported in this thesis
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aims to develop the distributed approach to knowledge representation for
the task of relation extraction. In the remainder of this chapter, we first
report the distributed approaches to nlp, which showcased state-of-the-
art results for the last decade, before presenting a structured symbolic
representation, knowledge bases, and some methods to obtain distributed
representations from them.

1.2 Distributed Representation of Words
Natural language processing (nlp) deals with the automatic manipulation
of natural language by algorithms. Nowadays, a large pan of nlp concerns
itself with the question of how to obtain good distributed representations
from textual inputs. What constitutes a good representation may vary,
but it is usually measured by performance on a task of interest. Natural
language inputs present themselves as tokens or sequences of tokens, usu-
ally in the form of words stringed together into sentences. The goal is then
to map these sequences of symbolic units to distributed representations.
This section and the next present several methods designed to achieve this
goal which have become ubiquitous in nlp research. We first describe how
to obtain good representations of words—or of smaller semantic units in
Section 1.2.3—before studying how to use these representations to process
whole sentences in Section 1.3.

Given a vocabulary, that is a set of words 𝑉 = {a, aardvark, aback,… },
our goal is to map each word 𝑤 ∈ 𝑉 to an embedding 𝑢𝑤 ∈ ℝ𝑑 where 𝑑 is a
hyperparameter. An example of an embedding space is given in Figure 1.1.

In contrast, a symbolic representation
of words would simply map each word
to an index 𝑉 → {1, … , |𝑉 |}.

One of the early methods to embed words like this is latent semantic anal-
ysis (lsa, Dumais et al. 1988). Interestingly, lsa was popularized by the Dumais et al., “Using latent semantic

analysis to improve access to textual
information” sigchi 1988

information retrieval field under the name latent semantic indexing (lsi).
The basis of lsa is a document–term matrix indicating how many times a
word appears in a document. A naive approach would be to take the rows
of this matrix; we would obtain a vector representation of each word, the
dimension 𝑑 of these embeddings would be the number of documents. The
similarity of two words is then evaluated by taking the cosine similarity of
the associated vectors; in the simple case described above, this value would
be high if the two words often appear together in the same documents and
low otherwise. We can already see that this representation is distributed
since each document makes up a small fraction of the representation of
the words it contains. However, this approach is not practical, as either 𝑑
is too large, or the representations obtained tend to be noisy (when the
number of documents is relatively small). So lsa goes one step further and
builds a low-rank approximation of this matrix such that 𝑑 can be cho-
sen as small as we want. This basic idea of modeling word co-occurrences
forms the basis behind most word embedding techniques.
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Figure 1.1: Selected word2vec embed-
dings of dimension 𝑑 = 300, projected
into two dimensions using pca (ex-
plained variance ratio 27.6%+25.4%).
The representations encode a strong
separation between countries and capi-
tals. Furthermore, the relative position
of each country with respect to its as-
sociated capital is somewhat similar.

In this section, we focus on the representation of words, yet most nlp
tasks need to process longer chunks of text; this will be the focus of Sec-
tion 1.3. We center our overview of word representations on word2vec in
Section 1.2.1. With the advent of deep learning, word2vec has been the
most ubiquitous word embedding technique. Additionally, it introduced
negative sampling, a technique that we make use of in Chapter 3. Sec-
tion 1.2.2 introduces the notion of language model, which is central to
several representation extraction techniques in nlp; we also present sev-
eral alternatives to word2vec used before the transition to sentence-level

https://dl.acm.org/doi/pdf/10.1145/57167.57214
https://dl.acm.org/doi/pdf/10.1145/57167.57214
https://dl.acm.org/doi/pdf/10.1145/57167.57214
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approaches of Section 1.3.4. Finally, while models presented in this section
are focused on words, smaller semantic units can similarly be used. This
is especially needed for languages in which words have a complex inter-
nal structure, but it can also be applied to English. Section 1.2.3 will ex-
plore alternative levels at which we can apply methods from Sections 1.2.1
and 1.2.2.

1.2.1 Word2vec
Word2vec (Mikolov et al. 2013a,b) is one of the first nlp models widely Mikolov et al., “Distributed Represen-

tations of Words and Phrases and their
Compositionality” neurips 2013

used for the representations it produces. As its name implies, word2vec
outputs word representations; however, its general framework can be used
on other kinds of tokens. Word2vec relies strongly on the distributional
hypothesis: its goal is to model the context of a word to produce a rep-
resentation of the word itself, a technique which was pioneered by Bengio
et al. (2003). Several variants of the word2vec model exist, but for the Bengio et al., “A Neural Probabilistic

Language Model” jmlr 2003sake of conciseness, this section focuses on the skip-gram with negative
sampling (sgns) approach.

1.2.1.1 Skip-gram

Given a word, the idea behind skip-gram is to model its context.16 The 16 The context of a word 𝑤 is defined
as all words appearing in a fixed-size
window around 𝑤 in the text. In the
case of word2vec, this window is of size
five in both directions.

probability of a word 𝑐 ∈ 𝑉 to appear in the context of a word 𝑤 ∈ 𝑉 is
modeled by the following softmax:

Here, we omit the conditioning on the
parameters. More formally, 𝑃(𝑐 ∣ 𝑤)
should be written 𝑃(𝑐 ∣ 𝑤; 𝑼, 𝑼′).

𝑃(𝑐 ∣ 𝑤) =
exp(𝒖𝖳

𝑤𝒖′
𝑐)

∑𝑐′∈𝑉 exp(𝒖𝖳
𝑤𝒖′

𝑐′)
(1.1)

where 𝑉 is the vocabulary, and 𝑼,𝑼 ′ ∈ ℝ𝑉 ×𝑑 are the model parameters
assigning a vector representation to all words in the vocabulary. The rows
of these parameters 𝒖𝑤 and 𝒖′

𝑤 are what is of interest when word2vec
is used for transfer learning. Once the model has been trained, 𝒖𝑤 can
be used as a distributed representation for 𝑤, capturing its associated
semantics. See Figure 1.1 for an example of extracted vectors.

1.2.1.2 Noise Contrastive Estimation
Evaluating Equation 1.1 is quite expensive since the normalization term in-
volves all the words in the vocabulary. Noise Contrastive Estimation (nce,
Gutmann and Hyvärinen 2010) is a training method that removes the need Gutmann and Hyvärinen, “Noise-con-

trastive estimation: A new estimation
principle for unnormalized statistical
models” aistats 2010

to compute the partition function of probabilistic models explicitly. To
achieve this, nce reframes the model as a binary classification problem by
modeling the probability that a data point—in word2vec’s case a word-
context pair—comes from the observed dataset 𝑃(D = 1 ∣ 𝑤, 𝑐). This prob- We use �̂� to refer to empirical distri-

butions, whereas 𝑃 denotes a modeled
probability. For example, �̂� (𝑐 ∣ 𝑤) is
the actual frequency of the word 𝑐 ∈ 𝑉
in the context of 𝑤 ∈ 𝑉. While 𝑃(𝑐 ∣ 𝑤)
is the probability word2vec assigns to
a given pair (𝑐, 𝑤) ∈ 𝑉 2.

ability is contrasted with 𝑘 samples from a noise distribution following the
unigram distribution ̂𝑃 (W), that is the empirical word frequency.17 This

17 Word2vec actually scales this distri-
bution and uses various other tricks to
lessen the effect of frequent words, refer
to Mikolov et al. (2013b) for details.

translate to 𝑃(𝑐 ∣ D = 1,𝑤) = ̂𝑃 (𝑐 ∣ 𝑤) and 𝑃(𝑐 ∣ D = 0,𝑤) = ̂𝑃 (W = 𝑐).
Using the prior 𝑃(D = 0) = 𝑘

𝑘+1
, the posterior can be expressed as:

𝑃(D = 1 ∣ 𝑤, 𝑐) =
̂𝑃 (𝑐 ∣ 𝑤)

̂𝑃 (𝑐 ∣ 𝑤) + 𝑘 ̂𝑃 (𝑐)
. (1.2)

Restating Equation 1.1 as 𝑃(𝑐 ∣ 𝑤) = exp(𝒖𝖳
𝑤𝒖′

𝑐)× 𝛾𝑤 and treating 𝛾𝑤
as another model parameter, nce allows us to train 𝑼 and 𝑼 ′ without

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.jmlr.org/papers/volume3/tmp/bengio03a.pdf
https://www.jmlr.org/papers/volume3/tmp/bengio03a.pdf
http://proceedings.mlr.press/v9/gutmann10a.html
http://proceedings.mlr.press/v9/gutmann10a.html
http://proceedings.mlr.press/v9/gutmann10a.html
http://proceedings.mlr.press/v9/gutmann10a.html
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computing the denominator of Equation 1.1. Furthermore, estimating 𝛾𝑤
is not even necessary, since Mnih and Teh (2012) showed that using 𝛾𝑤 = 1
for all 𝑤 works well in practice. The final objective maximised by nce is
the log-likelihood of the classification data:

𝐽nce(𝑤, 𝑐) = log𝑃(D = 1 ∣ 𝑤, 𝑐) +
𝑘

∑
𝑖=1

𝔼
𝑐′

𝑖∼𝑃(W)
[log𝑃(D = 0 ∣ 𝑤, 𝑐′

𝑖)] .

(1.3)
Gutmann and Hyvärinen (2010) showed that optimizing 𝐽nce is equiv-

alent to maximizing the log-likelihood using Equation 1.1 under some rea-
sonable assumptions.

1.2.1.3 Negative Sampling

However, sgns uses a different approximation of Equation 1.1 called neg-
ative sampling. The difference is mainly visible in the expression of the
objective which simplifies to:

𝐽neg(𝑤, 𝑐) = log𝜎(𝒖𝖳
𝑤𝒖′

𝑐) +
𝑘

∑
𝑖=1

𝔼
𝑐′

𝑖∼𝑃(W)
[log𝜎(−𝒖𝖳

𝑤𝒖′
𝑐′

𝑖
)] . (1.4)

This can be shown to be similar to nce, where Equation 1.2 is instead
replaced by the following posterior:

𝑃(D = 1 ∣ 𝑤, 𝑐) =
̂𝑃 (𝑐 ∣ 𝑤)

̂𝑃 (𝑐 ∣ 𝑤) + 1
. (1.5)

Optimizing the objective of Equation 1.4 is not equivalent to maxi-
mizing the log-likelihood of the language model. But even though this is
not an approximation of the softmax of Equation 1.1, this method has
proven to be quite effective at producing good word representations. Levy
and Goldberg (2014) explain the effectiveness of word2vec by showing Levy and Goldberg, “Neural Word

Embedding as Implicit Matrix Factor-
ization” neurips 2014

that sgns can be interpreted as factoring the pointwise mutual informa-
tion (pmi) matrix between words and contexts. This led to the emergence
of GloVe (Pennington et al. 2014), which produces word embeddings by
directly factorizing the pmi matrix.

The negative sampling algorithm is one of the main contributions of
word2vec; it can be used outside nlp to optimize softmax over large do-
mains. In particular, we make use of negative sampling to approximate a
softmax over a large number of entities in Chapter 3. Furthermore, even
though it was initially presented on words, the algorithm can be used on
other kinds of tokens, as we will see in Section 1.2.3.

1.2.2 Language Modeling for Word Representation
Word2vec is part of a large class of algorithms that seek to learn word
representation from raw text. More precisely, to obtain distributed rep-
resentations of natural language inputs, most modern approaches rely on
language models. A language model specifies a probability distribution
over sequences of tokens 𝑃(𝑤1,… ,𝑤𝑚). The tokens 𝒘 are usually words,
but as we see in Section 1.2.3, they need not be. This distribution is of-
ten decomposed into a product of conditional distributions on tokens. The

https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
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most common approach is the so-called causal language model, which uses
the following decomposition:

𝑃(𝑤1,… ,𝑤𝑚) =
𝑚

∏
𝑡=1

𝑃(𝑤𝑡 ∣ 𝑤1,… ,𝑤𝑡−1). (1.6)

Modeling the tokens one by one cannot only enable the model to factorize
the handling of local information but also makes it easy to sample to gen-
erate new utterances. However most language models do not use an exact
decomposition but either approximate 𝑃(𝒘) directly or use the decompo-
sition of Equation 1.6 together with an approximation of the conditionals
𝑃(𝑤𝑡 ∣ 𝑤1,… ,𝑤𝑡−1). This is for example the case of word2vec which condi-
tions each word on its close neighbors instead of using the whole sentence.

The use of language models is motivated by transfer learning, the idea
that by solving a problem, we can get knowledge about a different but
related problem. To assign a probability to a sequence, language models
extract intermediate latent factors, which were proven to capture the se-
mantic information contained in the sequence. Using these latent factors
as distributed representations for natural language inputs improved the
performance of most nlp tasks. The effectiveness of language models can
be justified by the externalist approach and the distributional hypothesis
exposed in Section 1.1: a word is defined by the distribution of the other
words with which it co-occurs.

Since language models process sequences of words, we will delve into
the details of these approaches in Section 1.3. Apart from the neural prob-
abilistic language model of Bengio et al. (2003), a precursor to word em-
bedding techniques was the cnn-based approach of Collobert and Weston
(2008), both of them learn distributed word representations by approxi-
mating 𝑃(𝒘) using a window somewhat similar to word2vec.

All of these methods learn static word embeddings, meaning that the
vector assigned to a word such as “bank” is the same regardless of the
context in which the word appears. In the last few years, contextualized
word embeddings have grown in popularity; in these approaches, the word
“bank” is assigned different embeddings in the phrases “robbing a bank”
and “bank of a river.” These methods were first based on recurrent neu-
ral networks (Section 1.3.2) such as elmo but are now primarily based
on transformers (Section 1.3.4). Among contextualized word embedding
built using transformers, some are based on the causal decomposition
of Equation 1.6 (e.g. gpt) while others are based on masked language
models (e.g. bert), a different approximation of 𝑃(𝒘) introduced in Sec-
tion 1.3.4.2.

1.2.3 Subword Tokens
We defined word2vec and language models for a vocabulary 𝑉 composed of
words. This may seem natural in the case of English and other somewhat
analytic languages,18

18 An analytic language is a language
with a low ratio of morphemes to
words. This is in contrast to synthetic
languages, where words have a com-
plex inner structure. Take for exam-
ple the Nahuatl word “Nimitztētla-
maquiltīz” (I-you-someone-something-
give-causative-future) meaning “I
shall make somebody give something
to you” (Suárez 1983). For this kind
of language, word-level approaches fail.
Older models preprocessed the text
with a morphological segmentation al-
gorithm, while modern approaches di-
rectly work on subword units.

but it cannot directly be applied to all languages.
Furthermore, language models that work at the word level tend to have
difficulties working with rare words. A first solution to this problem is to
use character-level models, but these tend to have a hard time dealing
with the resulting long sequences.

Modern approaches neither work at the word-level nor at the character-
level; instead, an intermediate subword vocabulary is used. The standard
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method to build this vocabulary nowadays is to use the byte pair encod-
ing algorithm (bpe, Gage 1994). bpe listed as Algorithm 1.1 consists in
iteratively replacing the most common bigram 𝑐1𝑐2 in a corpus with a
new token 𝑐new. This new token can then appear in the most common
bigram with another token 𝑐new𝑐3, they are then replaced with a new to-
ken 𝑐′

new which represents a tri-gram in the original alphabet: 𝑐1𝑐2𝑐3. This
is repeated until the desired vocabulary size is reached. In this way, bpe
extracts tokens close to morphemes, the smallest linguistic unit with a
meaning. As an example, by using this algorithm, the word “pretrained”
can be split into three parts: “pre-,” “-train-” and “-ed.”

algorithm bpe
Inputs: 𝑛 the vocabulary size

𝒕 the corpus
Output: 𝑉 the vocabulary

𝑉 ← all unique characters in 𝒕
while |𝑉 | < 𝑛 do

𝑐1𝑐2 ← most common bigram
in 𝒕

𝑐new ← new token not in 𝑉
𝒕 ← replace all occurrences of

𝑐1𝑐2 in 𝒕 by 𝑐new
𝑉 ← 𝑉 ∪ {𝑐new}

output 𝑉

Algorithm 1.1: The byte pair encoding
algorithm.

Word2vec can be both applied to words and to subwords extracted by
bpe or other algorithms. This is the case of fastText (Bojanowski et al.
2017) which uses the word2vec algorithm on fixed-size subwords. All the
models discussed in this section and the next have very loose requirements
on the vocabulary 𝑉. However, they might work best using a smaller 𝑉; this
is especially the case of transformers, the current state-of-the-art approach
introduced in Section 1.3.4.

1.3 Distributed Representation of Sentences
Most nlp tasks are tackled at the sentence level. In the previous section,
we saw how to obtain representations of words. We now focus on how to
aggregate these word representations in order to process whole sentences.
Henceforth, given a sentence of length 𝑚, we assume symbolic words 𝒘 ∈
𝑉 𝑚 are embedded as 𝑿 ∈ ℝ𝑚×𝑑 in a vector space of dimension 𝑑. This
can be achieved through the use of an embedding matrix 𝑼 ∈ ℝ𝑉 ×𝑑 such
as the one provided by word2vec.

An early approach to sentence representation was to use bag-of-words,
that is to simply ignore the ordering of the words. In this section, we focus
on more modern, deep learning approaches. Section 1.3.1 presents cnns,
which process fixed-length sequences of words to produce representations
of sentences. We then focus on rnns in Section 1.3.2, a method to get
representations of sentences through a causal language model. rnns can be
improved by an attention mechanism as explained in Section 1.3.3. Finally,
we present transformers in Section 1.3.4, which build upon the concept of
attention to extract state-of-the-art contextualized word representations.

1.3.1 Convolutional Neural Network
𝒙𝑡−2

Conv

ℎ𝑡−2,𝑖

𝒙𝑡−1

Conv

ℎ𝑡−1,𝑖

𝒙𝑡

Conv

ℎ𝑡,𝑖

𝒙𝑡+1

Conv

ℎ𝑡+1,𝑖

𝒙𝑡+2

Conv

ℎ𝑡+2,𝑖

Pooling

𝑜𝑖

Figure 1.2: Architecture of a single con-
volutional filter with a pooling layer.
The filter is of width 3, which means it
works on trigrams. A single filter (the
𝑖-th) is shown here, this is repeated 𝑑′

times, meaning that 𝒉𝑡, 𝒐 ∈ ℝ𝑑′
.

Convolutional neural networks (cnn) can be used to build the representa-
tion of a sentence from the representation of its constituting words (Col-
lobert and Weston 2008; Kim 2014). These words embeddings can come
from word2vec (Section 1.2.1) or can be learned using a cnn with a lan-
guage model objective (Section 1.2.2), the latter being the original ap-
proach proposed by Collobert and Weston (2008). Collobert and Weston, “A unified ar-

chitecture for natural language pro-
cessing: deep neural networks with
multitask learning” icml 2008

The basic idea behind cnn is to recognize patterns in a position-
invariant fashion (Waibel et al. 1989). This is applicable to natural lan-
guage following the principle of compositionality: the words composing
an expression and the rules used to combine them determine its mean-
ing, with little influence from the location of the expression in the text.
So, given a sequence of 𝑑-dimensional embeddings 𝒙1,… , 𝒙𝑚 ∈ ℝ𝑑, a one

https://dl.acm.org/doi/pdf/10.1145/1390156.1390177
https://dl.acm.org/doi/pdf/10.1145/1390156.1390177
https://dl.acm.org/doi/pdf/10.1145/1390156.1390177
https://dl.acm.org/doi/pdf/10.1145/1390156.1390177
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dimensional cnn works on the 𝑛-grams of the sequence, that is the sub-
words19 𝒙𝑡∶𝑡+𝑛−1 = (𝒙𝑡,… , 𝒙𝑡+𝑛−1) of length 𝑛. The basic design of a cnn 19 Here we use subwords in its formal

language theory meaning. In the sim-
ple setting where we deal with words in
a sentence, this subword actually desig-
nates a sequence of consecutive words.

is illustrated in Figure 1.2. A convolutional layer is parametrized by 𝑑′

filters 𝑾 (𝑖) ∈ ℝ𝑛×𝑑 of width 𝑛 and a bias 𝑏(𝑖) ∈ ℝ. The 𝑡-th output of the
𝑖-th filter layer is defined as:

ℎ(𝑖)
𝑡 = 𝑓(𝑾 (𝑖) ∗ 𝒙𝑡∶𝑡+𝑛−1 + 𝑏(𝑖)) (1.7)

where ∗ is the convolution operator20 and 𝑓 is a non-linear function. As is 20 Usually, a cross-correlation operator
is actually used, which is equivalent up
to a mirroring of the filters when they
are real-valued.

usual with neural networks, several layers of this kind can be stacked. To
obtain a fixed-size representation—which does not depend on the length of
the sequence 𝑚—a pooling layer can be used. Most commonly, max-over-
time pooling (Yamaguchi et al. 1990), which simply takes the maximum ac-
tivation over time—that is sequence length—for each feature 𝑖 = 1,… , 𝑑′.

In the same way that word2vec produces a real vector space where
words with similar meanings are close to each other, the sentence repre-
sentations 𝒐 extracted by a cnn tend to be close to each other when the
sentences convey similar meanings. This is somewhat dependent on the
task on which the cnn is trained. However, the purpose of cnn is usually
to extract the semantics of a sentence, and the nature of most tasks makes
it so that sentences with similar meanings should have similar representa-
tions.

1.3.2 Recurrent Neural Network
A limitation of cnns is the difficulty they have modeling patterns of non-
adjacent words. A second approach to process whole sentences is to use
recurrent neural networks (rnn). rnns purpose to sum up an entire sen-
tence prefix into a fixed-size hidden state, updating this hidden state as
the sentence is processed. This can be used to build a causal language
model following the decomposition of Equation 1.6. As showcased by Fig-
ure 1.3, the hidden state 𝒉𝑡 can be used to predict the next word 𝑤𝑡+1
with a simple linear layer followed by a softmax, formally:

𝒙𝑡−1

Linear

𝒉𝑡−1

Linear

�̂�𝑡

𝒙𝑡

Linear

𝒉𝑡

Linear

�̂�𝑡+1

𝒙𝑡+1

Linear

𝒉𝑡+1

Linear

�̂�𝑡+2

𝒉𝑡−1

Figure 1.3: rnn language model un-
rolled through time.

𝒉𝑡 = 𝑓(𝑾 (𝑥)𝒙𝑡 +𝑾 (ℎ)𝒉𝑡−1 + 𝒃(ℎ)) (1.8)
�̂�𝑡 = softmax(𝑾 (𝑜)𝒉𝑡 + 𝒃(𝑜))

where 𝑾 (𝑥), 𝑾 (ℎ), 𝑾 (𝑜), 𝒃(ℎ) and 𝒃(𝑜) are model parameters and 𝑓 is
a non-linearity, usually a sigmoid 𝑓(𝑥) = 𝜎(𝑥) = 1

1+e−𝑥 . This model is
usually trained by minimizing the negative log-likelihood:

We generally use 𝜽 to refer to the set
of model parameters. In this case 𝜽 =
{𝑾 (𝑥), 𝑾 (ℎ), 𝑾 (𝑜), 𝒃(ℎ), 𝒃(𝑜)}.

ℒrnn(𝜽) =
𝑚

∑
𝑡=1

− log𝑃(𝑤𝑡 ∣ 𝒙1,… , 𝒙𝑡−1; 𝜽)

using the backpropagation-through time algorithm. The gradient is run
through all the steps of the rnn until reaching the beginning of the se-
quence. When the sequence is a sentence, this can easily be achieved.
However, when longer spans of text are considered, the gradient only goes
back a fixed number of tokens in order to limit memory usage.

1.3.2.1 Long Short-termMemory
Standard rnns tend to have a hard time dealing with long sequences.
This problem is linked to the vanishing and exploding gradient problems.
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When the gradient goes through several non-linearities, it tends to be less
meaningful, and gradient descent does not lead to satisfying parameters
anymore. In particular, when 𝑾 (ℎ) has a large spectral norm, the values
𝒉𝑡 tend to get bigger and bigger with long sequences, on the other hand
when its spectral norm is small, these values get smaller and smaller. When
𝒉𝑡 has a large magnitude, the sigmoid activation saturates and 𝜕ℒrnn

𝜕𝒉𝑡
gets

close to zero, the gradient vanishes. rnn variants are used to alleviate
this vanishing gradient problem, the most common being long short-term
memory (lstm, Hochreiter and Schmidhuber 1997). Hochreiter and Schmidhuber, “Long

Short-Term Memory” neco 1997

𝒙𝑡, 𝒉𝑡−1 𝒉𝑡𝒄𝑡

Cell

Input Gate Output Gate

Forget Gate

𝒊𝑡 𝒐𝑡

𝒇𝑡 LSTM

Figure 1.4: Architecture of an lstm
cell. In its simplest form, this block re-
places the linear layer at the bottom
of Figure 1.3. The link between 𝒄𝑡 and
𝒄𝑡−1 is illustrated by a self-loop but
could be seen as an additional input
and output.

lstms redefine the recurrence of rnns (Equation 1.8) by adding multi-
plicative gates as illustrated by Figure 1.4. It is governed by the following
set of equations:

𝒙′
𝑡 = [

𝒙𝑡

𝒉𝑡−1
] Recurrent input

̃𝒄𝑡 = tanh(𝑾 (𝑐)𝒙′
𝑡 + 𝒃(𝑐)) Cell candidate

𝒊𝑡 = 𝜎(𝑾 (𝑖)𝒙′
𝑡 +𝑼 (𝑖)𝒄𝑡−1 + 𝒃(𝑖) Input gate

𝒇𝑡 = 𝜎(𝑾 (𝑓)𝒙′
𝑡 +𝑼 (𝑓)𝒄𝑡−1 + 𝒃(𝑓)) Forget gate

𝒄𝑡 = 𝒊𝑡 ⊙ ̃𝒄𝑡 + 𝒇𝑡 ⊙ 𝒄𝑡−1 New cell
𝒐𝑡 = 𝜎(𝑾 (𝑜)𝒙′

𝑡 +𝑼 (𝑜)𝒄𝑡 + 𝒃(𝑜)) Output gate
𝒉𝑡 = 𝒐𝑡 ⊙ tanh(𝒄𝑡) Hidden layer output

⊙ is the element-wise multiplication
and 𝜎 the sigmoid function.

As with rnn, 𝜽 = {𝑾 (𝑐), 𝑾 (𝑖), 𝑼 (𝑖),
𝑾 (𝑓), 𝑼 (𝑓), 𝑾 (𝑜), 𝑼 (𝑜), 𝒃(𝑐), 𝒃(𝑓), 𝒃(𝑖),
𝒃(𝑜)} are model parameters.

The main peculiarity of lstm is the presence of multiple gates used as
masks or mixing factors in the unit. lstm units are interpreted as having
an internal cell memory 𝒄𝑡 which is an additional (internal) state alongside
𝒉𝑡 and is used as input of the cell alongside 𝒙𝑡 and 𝒉𝑡−1. When computing
its activation, we first compute a cell candidate ̃𝒄𝑡 which is the potential
successor to 𝒄𝑡. Then, the multiplicative gates come into play, the cell 𝒄𝑡
is partially updated with a mix of 𝒄𝑡−1 and ̃𝒄𝑡 controlled by the input and
forget gates 𝒊𝑡 and 𝒇𝑡. Finally, the output of the unit is masked by the
output gate 𝒐𝑡.21 21 Note that the output gate 𝒐𝑡 has

its value computed from the new cell
value 𝒄𝑡 instead of 𝒄𝑡−1 in contrast to
the expression of 𝒊𝑡 and 𝒇𝑡.

It has been theorized (Hochreiter 1998) that the gates are what makes
lstms so powerful. The multiplications allow the model to learn to control
the flow of information in the unit, thus counteracting the vanishing gra-
dient problem. The basic building block of multiplicative gates has been
reused for other rnn cell designs such as gated recurrent unit (gru, Cho et
al. 2014). Furthermore, random cell designs using multiplicative gates can

https://direct.mit.edu/neco/article/9/8/1735/6109
https://direct.mit.edu/neco/article/9/8/1735/6109
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be shown to perform as well as lstm (Greff et al. 2017). However, standard
practice is to always use lstm or gru for recurrent neural networks.

1.3.2.2 elmo

Recurrent neural networks with lstm cells were widely used for language
modeling, both at the character-level (Sutskever et al. 2011) and at the
word-level (Jozefowicz et al. 2016). The first language model to become
widely used for extracting contextual word embeddings was elmo (Em-
beddings from Language Model, Peters et al. 2018) which uses several Peters et al., “Deep Contextualized

Word Representations” naacl 2018lstm layers.
The peculiarity of the word embeddings extracted by elmo is that they

are contextualized (see Section 1.2.2). Static word embeddings models like
word2vec (Section 1.2.1) map each word to a unique vector. However, this
fares poorly with polysemic words and homographs whose meaning de-
pends on the context in which they are used. Contextualized word embed- Before elmo, McCann et al. (2017) al-

ready trained contextualized word rep-
resentations using an nmt task.

dings provide an answer to this problem. Given a sentence, elmo proposes
to use the hidden states 𝒉𝑡 as a representation of each constituting word
𝑤𝑡. These representations are hence a function of the whole sentence.22 22 In order to encode both the left

and right context of a word, elmo uses
bidirectional lstm, meaning that each
layer contains two lstm, one running
from left-to-right and one right-to-left.

Thus words are mapped to different vectors in different contexts.

1.3.3 AttentionMechanism
To obtain a vector representation of a sentence from an rnn, two straight-
forward methods are to use the last hidden state 𝒉𝑚 or use a pooling
layer similar to the one used in cnn, such as max-over-time pooling. How-
ever, both of these approaches present shortcomings: the last hidden state
tends to encode little information about the beginning of the sentence,
while pooling is too indiscriminate and influenced by unimportant words.
Using an attention mechanism is a way to avoid these shortcomings. Fur-
thermore, an attention mechanism is parametrized by a query which allows
us to select the piece of information we want to extract from the sentence.

The concept of attention first appeared in neural machine translation
(nmt) under the name “alignment” (Bahdanau et al. 2015) before becom- Bahdanau et al., “Neural Machine

Translation by Jointly Learning to
Align and Translate” iclr 2015

ing ubiquitous in nlp. The same principle was also presented under the
name memory network (Sukhbaatar et al. 2015; Weston et al. 2015). It is
also the building block of transformers, which are presented next. With
this in mind, we use the vocabulary of memory networks to describe the
attention mechanism.

1.3.3.1 Attention as a Mechanism for rnn

The principle of an attention layer on top of an rnn is illustrated by
Figure 1.5. The layer takes three inputs: a query 𝒒 ∈ ℝ𝑑, memory keys
𝑲 ∈ ℝℓ×𝑑 and memory values 𝑽 ∈ ℝℓ×𝑑′. Originally, more often than
not, 𝑲 = 𝑽. In the model of Figure 1.5, the memory corresponds to the
hidden states of the rnn, which was the most common architecture when
attention was introduced in 2014. First, attention weights are computed
from the query 𝒒 and keys 𝑲, then these weights are used to compute the
output 𝒐 ∈ ℝ𝑑′ as a convex combination of the values 𝑽 :

Where softmax is a smooth version of
the argmax function. It can also be
seen as a multi-dimensional sigmoid,
defined as:

softmax(𝒙)𝑖 =
exp 𝑥𝑖

∑𝑗 exp 𝑥𝑗𝒐 = softmax(𝑲𝒒)𝑽 . (1.9)

https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
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KeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKey Figure 1.5: Schema of an attention
mechanism. The attention scores are
obtained by an inner product between
the query and the memory. The output
is obtained as a sum of the memory
weighted by the softmax of the atten-
tion scores.

In nmt, the memory is built from the hidden states of an rnn running
on the sentence to be translated (meaning ℓ = 𝑚), while the query is
the state of the translated sentence (“what was already translated”), the
attention is then recomputed for each output position. In other words,
a new representation of the source sentence is recomputed for each word
in the target sentence. The attention weights—that is, the output of the
softmax—can provide an interpretation of what the model is focusing on
when making a prediction. In the case of nmt, the attention for producing
a translated word usually focuses on the corresponding word or group of
words in the source sentence.

1.3.3.2 Attention as a Standalone Model
Since the attention mechanism produces a fixed-size representation (𝒐)
from a variable length sequence (𝑲, 𝑽 ), it can actually be used by it-
self without an rnn. This was already mentioned in Sukhbaatar et al.
(2015)

Sukhbaatar et al., “End-To-End Mem-
ory Networks” neurips 2015

and used for language modeling. We now succinctly present their
approach. As shown Figure 1.6, this is a causal language model (Sec-
tion 1.2.2), at each step 𝑃(𝑤𝑡 ∣ 𝑤1,… ,𝑤𝑡−1) is modeled. While the previ-
ous words constitute the memory of the attention mechanism, there is no
natural value for the query. As such, for the first layer, it is simply taken
to be a constant vector 𝑞(1)

𝑖 = 0.1 for all 𝑖 = 1,… , 𝑑. When several atten-
tion layers are stacked, the output 𝑜(𝑙) of a layer 𝑙 is used as the query
𝑞(𝑙+1) for the layer 𝑙 + 1. Furthermore, residual connections with linear
layers and modified ReLU non-linearities23

23 While the standard ReLU activa-
tion (Glorot et al. 2011) is defined
as ReLU(𝑥) = max(0, 𝑥). The non-
linearity used in this model is ReLU ,
which applies the ReLU activation to
half of the units in the layer.

are introduced between layers
thus: 𝒒(𝑙+1) = ReLU (𝑾 (𝑙)𝒒(𝑙) +𝒐(𝑙)) where the matrices 𝑾 (𝑙) ∈ ℝ𝑑×𝑑 are
parameters of the model. As usual, the next word prediction �̂�𝑖 is made
using a softmax layer.

𝒒(1)

𝒐(1)

𝒒(2)

𝒐(2)

0.1

�̂�𝑡𝒙𝑡−1⋯𝒙1

Figure 1.6: Schema of a memory net-
work language model with two lay-
ers. Each red block corresponds to an
attention mechanism as illustrated by
Figure 1.5.

Temporal Encoding The attention mechanism as described above is
invariant to a permutation of the memory. This is not a problem when an
rnn is run on the sentence, as it can encode the relative positions of each
token. However, in the rnn-less approach of Sukhbaatar et al. (2015) this
information is lost, which is quite damaging for language modeling. Indeed,
this would mean that shuffling the words in a sentence—like inverting
the subject and object of a verb—does not change its meaning. In order
to solve this problem, temporal encoding is introduced. When predicting

https://proceedings.neurips.cc/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
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𝑤𝑖, each word embedding 𝒙𝑗 in the memory is summed with a relative
position embedding 𝒆𝑖−𝑗. These position embeddings are trained through
back-propagation like any other parameters.

Attention mechanisms form the basis of current state-of-the-art ap-
proaches in nlp. One of the explanations behind their success is that, in
a sense, they are more shallow than rnn. Indeed, when computing 𝜕�̂�𝑖

𝜕𝒙𝑗

for the language model of Sukhbaatar et al. (2015), one can see that part
of the gradient goes through few non-linearities. In contrast, the infor-
mation from 𝒙𝑗 to �̂�𝑖 must go through the composition of at least 𝑖 − 𝑗
non-linearities in an rnn, which may cause the gradient to vanish. How-
ever, an attention mechanism has linear complexity in the length of the
sequence for a total of 𝛩(𝑚 × 𝑑2) operations at each step. When 𝑚 is
large, this can be prohibitive compared to rnn, which have a 𝛩(𝑑2) com-
plexity at each step. On the other hand, an attention layer can easily be
parallelized while an rnn always necessitates 𝛺(𝑚) sequential operations.

1.3.4 Transformers
Transformers (Vaswani et al. 2017) were originally introduced for nmt. Vaswani et al., “Attention is All you

Need” neurips 2017Likewise to the memory network language model presented above, they
introduce several slight modifications of its architecture which make them
the current state of the art for most nlp tasks. For conciseness, we present
the concept of transformers as used by bert (Bidirectional Encoder Rep-
resentations from Transformers, Devlin et al. 2019). bert is a language Devlin et al., “bert: Pre-training of

Deep Bidirectional Transformers for
Language Understanding” naacl 2019

model used to extract contextualized embeddings similar to elmo but us-
ing attention layers in place of lstm layers.

1.3.4.1 Transformer Attention
The attention layers used by transformers are slightly modified. First, it is Note that in contrast to the classical

attention mechanism presented in Sec-
tion 1.3.3, transformers have 𝑲 ≠ 𝑽.

often advisable that in a neural network, all activations follow a standard
normal distribution N (0, 1). In order to achieve this, transformers use
scaled attention:

Attention(𝒒,𝑲,𝑽 ) = softmax(𝑲𝒒
√
𝑑
)𝑽 . (1.10)

This ensures that if 𝑲 and 𝒒 follow a standard normal distribution, so
does the input of the softmax.

Second, multi-head attention is used: each layer actually applies ℎ =
8 attentions in parallel. To ensure each individual attention captures a
different part of the semantic, its input is projected by different matrices,
one for each attention head:

MultiHeadAttention(𝒒,𝑲,𝑽 ) =
⎡
⎢⎢
⎣

head1(𝒒,𝑲,𝑽 )
head2(𝒒,𝑲,𝑽 )

⋮
headℎ(𝒒,𝑲,𝑽 )

⎤
⎥⎥
⎦

𝑾 (𝑜)

head𝑖(𝒒,𝑲,𝑽 ) = Attention(𝒒𝑾 (𝑞)
𝑖 ,𝑲𝑾 (𝑘)

𝑖 , 𝑽𝑾 (𝑣)
𝑖 ).

Lastly, on top of each attention layer is a linear layer with ReLU acti-
vation and a linear layer followed by layer normalization (Ba et al. 2016).

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
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These linear layers are identical along the sequence length, akin to a con-
volution with kernel size 1. While the query of each layer is the output
of the preceding layer, similarly to the model of Sukhbaatar et al. (2015),
the initial query is now the current word itself 𝒙𝑡. This architecture is
illustrated in Figure 1.7.

Devlin et al. (2019) introduce two bert architectures dubbed bert-
small and bert-large. Like their names imply, bert-small has fewer
parameters than bert-large, in particular, bert-small is composed of
12 layers while bert-large is composed of 24 layers.
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Figure 1.7: Schema of bert, a trans-
former masked language model. The
schema is focused on the prediction
for a single position 𝑡, this is repeated
for the whole sentence 𝑡 = 1, … , 𝑚.
The model presented is the bert-small
variant containing only 12 layers. The
input vectors �̃�𝑡 are obtained from the
corrupted sentence �̃� using an embed-
ding layer. To obtain �̂�𝑡 from the last
bert layer output, a linear layer with
softmax over the vocabulary is used.

1.3.4.2 Masked Language Model

While some transformer models such as gpt (Generative Pre-Training,
Radford et al. 2018) are causal language models, bert is a masked lan-
guage model (mlm). Instead of following Equation 1.6, the following ap-
proximation is used:

𝑃(𝒘) ∝ ∏
𝑡∈𝐶

𝑃(𝑤𝑡 ∣ �̃�) (1.11)

where 𝐶 is a random set of indices, 15% of tokens being uniformly selected
to be part of 𝐶, and �̃� is a corrupted sequence defined as follow:

�̃�𝑡 =
⎧{{
⎨{{⎩

𝑤𝑡 if 𝑡 ∉ 𝐶
<blank/> token with probability 80%
random token with probability 10%
𝑤𝑡 with probability 10%

⎫}
⎬}⎭

if 𝑖 ∈ 𝐶

The masked tokens <blank/> make up the majority of the set 𝐶 of tokens
predicted by the model, thus the name “masked language model”. The
main advantage of this approach compared to causal language model is
that the probability distribution at a given position is parametrized by
the whole sentence, including both the left and right context of a token.

1.3.4.3 Transfer Learning

The main purpose of bert is to be used on a downstream task, transferring
the knowledge gained on masked language modeling to a different problem.
As with elmo, the hidden state of the topmost layer, just before the linear
and softmax, can be used as contextualized word representations. Further-
more, the first token, usually called “beginning of sentence” but dubbed
cls in bert, can be used as a representation of the whole sentence.24 In 24 This is by virtue of an addi-

tional next sentence prediction loss
with which bert is trained. We do not
detail this task here as it is not essen-
tial to bert’s training. Furthermore,
the embedding of the cls token is con-
sidered a poor representation of the
sentence and is rarely used (Conneau
and Lample 2019; Yang et al. 2019).

contrast with elmo, bert is usually fully fine-tuned on the downstream
task. In the original article (Devlin et al. 2019), this was shown to outper-
form previous models on a wide variety of tasks, from question answering
to textual entailments.

In this section, we presented several nlp models which allow us to get a
distributed representation for words, sentences and words contextualized
in sentences. These representations can then be used on a downstream
task, such as relation extraction, as we do from Chapter 2 onward. We
now focus on the other kind of data handled in this thesis: knowledge
bases.



1.4 Knowledge Base 39

1.4 Knowledge Base
Our goal is to extract structured knowledge from text. In this section,
we introduce the object we use to express this knowledge, namely the
knowledge base. A knowledge base is a symbolic semantic representation
of some piece of knowledge. It is defined by a set of concepts, named
entities, and by the relationships linking these entities together, named
facts or statements. Formally, a knowledge base is constructed from a set
of entities ℰ, a set of relations ℛ and a set of facts 𝒟kb ⊆ ℰ×ℛ×ℰ. Note
that these facts purpose to encode some kind of truth about the world. To
illustrate, here are some examples from Wikidata (Vrandečić and Krötzsch
2014):

ℰ = {Q90(Paris), Q7251(Alan Turing),… }
ℛ = {P1376(capital of ), P19(place of birth),… }

𝒟kb = {Q90 P1376 Q142 (Paris is the capital of France),
Q3897 P1376 Q916 (Luanda is the capital of Angola),
Q7251 P19 Q122744 (Alan Turing was born in Maida Vale),
Q164047 P19 Q23311 (Alexander Pope was born in London),
… }

As indicated by the identifiers such as Q7251, knowledge bases link
concepts together. An entity is a concept that may have several textual
representations—surface forms—such as “Alan Turing” and “Alan Math-
ison Turing.” Here, we showed the Wikidata identifier whose purpose is to
identify concepts uniquely. For ease of reading, when there is no ambiguity
between an entity and one of its surface forms, we simply write the surface
form without the identifier of its associated concept.

capital of P1376Paris Q90 France Q142

relation
head
entity

tail
entity

fact

Figure 1.8: Structure of a knowledge
base fact.

Given two entities 𝑒1, 𝑒2 ∈ ℰ and a relation 𝑟 ∈ ℛ, we simply write
𝑒1 𝑟 𝑒2 as a shorthand notation for (𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb, meaning that 𝑟 links
𝑒1 and 𝑒2 together. As illustrated by Figure 1.8, 𝑒1 is called the head entity
of the fact or subject of the relation 𝑟. Similarly, 𝑒2 is called the tail entity
or object, while 𝑟 is called the relation, property or predicate.25 25 The term predicate can either re-

fer to the relation 𝑟, or to the couple
(𝑟, 𝑒2), thus we will avoid using this
terminology.

Thanks to this extremely rigid structure, knowledge bases are easier
to process algorithmically. Querying some piece of information from a
knowledge base is well defined and formalized. Query languages such as
sparql ensure that information can be retrieved deterministically. This Example of sparql query for all capital

cities in Asia:
select ?capital
where {

?capital capital of ?country.
?country part of Asia.

}

is in contrast to natural language, where querying some knowledge from
a piece of text needs to be performed using an nlp model, thus incurring
some form of variance on the result. With this in mind, it is not surprising
that several machine learning models rely on knowledge bases to remove
a source of uncertainty from their system; this can be done in a variety
of tasks such as question answering (Berant et al. 2013; Yih et al. 2015),
document retrieval (Dalton et al. 2014) and logical reasoning (Socher et al.
2013).

Commonly used general knowledge bases include Freebase (Bollacker
et al. 2008), dbpedia (Auer et al. 2008) and Wikidata (Vrandečić and
Krötzsch 2014). There are also several domain-specific knowledge bases
such as Wordnet (G. A. Miller 1995) and GeneOntology (Gene Ontol-
ogy Consortium 2004). Older works focus on Freebase—which is now
discontinued—while newer ones focus on Wikidata and dbpedia. These
knowledge bases usually include more information than what was de-
scribed above. For example, Wikidata includes statement qualifiers that

https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Q142
https://www.wikidata.org/wiki/Q3897
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Q916
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org/wiki/Q122744
https://www.wikidata.org/wiki/Q164047
https://www.wikidata.org/wiki/Property:P19
https://www.wikidata.org/wiki/Q23311
https://www.wikidata.org/wiki/Q7251
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q142
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may modify a statement, such as the fact “Versailles capital of France”
qualified by “end time: 5 October 1789.” For the sake of simplicity, we limit
ourselves to triplets in ℰ×ℛ×ℰ. Further details on the specific knowledge
bases can be found in Appendix C.

1.4.1 Relation Algebra
The concept of relation algebra was
theorized as a structure for logical
systems. Developed by several famous
mathematicians such as Augustus De
Morgan, Charles Peirce and Alfred
Tarski, it can be used to express zfc
set theory. Here we only use relation
algebra as a formal framework to ex-
press properties of binary relations.

Relations linking two entities from the same set of entities ℰ are called
binary endorelations. A relation such as “capital of ” is a subset of the
cartesian square ℰ2; it is a set of pairs of entities linked together by this
relation. The set of all possible such relations exhibit a structure called a
relation algebra (2ℰ2, ∩, ∪, ,̄ 𝟎, 𝟏, •, 𝑰, )̆. We use it as a formalized system
of notation for relation properties. A relation algebra is defined from:

• three special relations:
– 𝟎, the empty relation linking no entities together (𝑒1 𝟎 𝑒2 is

always false);
– 𝟏, the complete relation linking all entities together (𝑒1 𝟏 𝑒2 is

always true);
– 𝑰, the identity relation linking all entities to themselves (𝑒1 𝑰 𝑒2

is true if and only if 𝑒1 = 𝑒2).

• two unary operators:
– the complementary relation ̄𝑟 which links together entities not

linked by 𝑟;
– the converse ̆𝑟 which reverses the direction of the relation such

that 𝑒1 ̆𝑟 𝑒2 holds if and only if 𝑒2 𝑟 𝑒1 holds.

• three binary operators (in order of lowest precedence, to highest
precedence):

– disjunction 𝑒1 (𝑟1 ∪ 𝑟2) 𝑒2, either 𝑟1 or 𝑟2 link 𝑒1 with 𝑒2;
– conjunction 𝑒1 (𝑟1 ∩ 𝑟2) 𝑒2, both 𝑟1 and 𝑟2 link 𝑒1 with 𝑒2;
– composition 𝑒1 (𝑟1 • 𝑟2) 𝑒2, there exist 𝑒3 ∈ ℰ such that both

𝑒1 𝑟1 𝑒3 and 𝑒3 𝑟2 𝑒2 hold.
Note that • composes relations in the
opposite order of the function com-
position ∘. Indeed while 𝑓 ∘ 𝑔 means
that 𝑔 is applied first, then 𝑓 is ap-
plied, “mother • born in” means that
“mother” is first applied to the entity,
then “born in” is applied to the result.

Thanks to this framework, we can express several properties on knowl-
edge base relations since ℛ ⊆ 2ℰ2. For example, the functional property
can be stated as ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰. A relation 𝑟 is functional when for all
entities 𝑒1 there is at most one entity 𝑒2 such that 𝑒1 𝑟 𝑒2 holds. The
relation “born in” is functional since all entities are either born at a single
place or not born at all. Taking the above definition this means that for
all cities 𝑐 if we take all entities who were born in 𝑐 ( ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰) and
then ( ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰) look at where these entities were born ( ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰),
we must be back to 𝑐 and only c ( ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰) or no such 𝑐 shall exist
( ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰). We need to take the disjunction with 𝑰 since some entities
were not born anywhere, for example 𝑒 ( ̆𝑟 • 𝑟) 𝑒 is false when 𝑟 is “born
in” and 𝑒 is “Mount Everest.”

Other common properties of binary relations can be defined this way.
One particular property of interest is the restriction of the domain and co-
domain of relations. A lot of relations can only apply to a specific type of
entity, such as locations or people. To express these properties, we use the
notation 𝟏𝑋 ⊆ 𝟏 with 𝑋 ⊆ ℰ to refer to the complete relation restricted
to entities in 𝑋: 𝟏𝑋 = { (𝑥1, 𝑥2) ∣ 𝑥1, 𝑥2 ∈ 𝑋}. This allows us to define
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left-restriction (restriction of the domain) and right-restriction (restriction
of the co-domain). Relevant properties are given in Table 1.1.

Property Condition

Injective 𝑟 • ̆𝑟 ∪ 𝑰 = 𝑰
Functional ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰
Symmetric 𝑟 = ̆𝑟
Transitive 𝑟 • 𝑟 ∪ 𝑟 = 𝑟
Left-restriction 𝑟 • ̆𝑟 ∪ 1𝑋 = 1𝑋
Right-restriction ̆𝑟 • 𝑟 ∪ 1𝑋 = 1𝑋

Table 1.1: Some fundamental relation
properties expressed as conditions in
relation algebra.

Some relation properties recurring in the literature are the cardinal-
ity constraints. They can be defined as combinations of the injective and
functional properties:

Many-to-Many (𝑁 → 𝑁 ) the relation is neither injective nor functional.
Examples: “author of,” “language spoken,” “sibling of.”

Many-to-One (𝑁 → 1) the relation is functional but it is not injective.
Examples: “place of birth,” “country.”

One-to-Many (1 → 𝑁 ) the relation is injective but it is not functional.
Examples: “contains administrative territorial entity,” “has part.”

One-to-One (1 → 1) the relation is both injective and functional.
Examples: “capital,” “largest city,” “highest point.”

When a relation 𝑟 is one-to-many, its converse ̆𝑟 is many-to-one. The
usual way to design relations in knowledge bases is to use many-to-one
relations, making one-to-many relations quite rare in practice. Since most
systems handle relations in a symmetric fashion, this has little to no effect.

Most of the examples given above are not strictly true. A person can
be both registered as being born in Paris and in France. Some countries do
not designate a single capital or share their highest point with a neighbor.
However, defining these properties is helpful to evaluate the abilities of
models to capture these kinds of relations. To handle such cases, these
properties can be seen in a probabilistic way.26 26 Given empirical data, the propen-

sity of a relation to be many-to-one
can be measured with a conditional en-
tropy H(e2 ∣ e1, 𝑟). An entropy close
to zero means the relation tends to be
many-to-one.

We use the notations from relation algebra to formalize assumptions
made on the structure of knowledge bases. For example several models
assume that ∀𝑟1, 𝑟2 ∈ ℛ ∶ 𝑟1 ∩ 𝑟2 = 𝟎, that is all pairs of entities are
linked by at most one relation. A list of common assumptions is provided
in Appendix B, it should prove useful from the Chapter 2 onwards. For
readers unfamiliar with relation algebra notations, we provide detailed
explanation of complex formulae in the margins throughout this thesis.

1.4.2 Distributed Representation through Knowledge
Base Completion

One problem with knowledge bases is that they are usually incomplete.
However, given some information about an entity, it is usually possible
to infer additional facts about this entity. This is called knowledge base
completion. Sometimes this inference is deterministic. For example, if two
entities have the same two parents, we can infer that they are siblings.
Quite often, this reasoning is probabilistic. For example, the head of state
of a country usually lives in this country’s capital; this probability can be
further increased by facts indicating that previous heads of state died in
the capital, etc.

The task of knowledge base completion is essential for our work be-
cause of two reasons. First of all, it is the standard approach to obtain
a distributed representation of knowledge base objects. Second, the mod-
els used to tackle this task are often reused as part of relation extraction
systems; this is the case of all approaches presented in this section.

We define two sub-tasks of knowledge base completion: relation predic-
tion and entity prediction.27

27 In the literature, both of these tasks
can be called “link prediction” and
“knowledge graph completion.”In the relation prediction task, the goal is to
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predict the relation between two entities (𝑒1 ? 𝑒2), while entity prediction
focuses on predicting a missing entity in a triplet (𝑒1 𝑟 ? or ? 𝑟 𝑒2). His-
torically, this is performed using symbolic approaches.

Relation prediction is quite similar to
our task of interest: relation extraction.
The main difference being that rela-
tion prediction is defined on knowledge
bases, while relation extraction takes
natural language inputs. This parallel
is exploited by the model presented in
Chapter 3.

For example, this
task can be tackled using an inference engine relying on a human expert
inputting logical rules such as:

𝑒1 parent of 𝑒2 ∧ 𝑒1 parent of 𝑒3 ∧ 𝑒2 ≠ 𝑒3 ⟺ 𝑒2 sibling of 𝑒3,

or using the relation algebra notation introduced in Section 1.4.1:(parent of •parent of ∩ ̄𝑰 = sibling of.
𝑒2

(parent of 𝑒1 means that 𝑒1 is a par-
ent of 𝑒2. Adding a composition to this,
𝑒2

(parent of • parent of 𝑒3 means that
the aforementioned 𝑒1 has a child 𝑒3.
This child 𝑒3 could be the same as 𝑒2,
this is why we take the conjunction
with the complement of the identity re-
lation ∩ ̄𝑰, thus obtaining the relation
sibling of.

However, listing all possible logical implications is not feasible. As with
nlp, to tackle this problem, another approach is to leverage distributed
representations. Some good early results were obtained by rescal, which
we present in Section 1.4.2.2. But the problem started to gather a lot of in-
terest in the deep learning community with TransE (Section 1.4.2.3) which
encodes relations as translation in the semantic space. This was followed
by several other approaches that encoded relations as other kinds of ge-
ometric transformations. All the models presented in this section assume
that the entities are embedded in a latent semantic space ℝ𝑑 with a matrix
𝑼 ∈ ℝℰ×𝑑 where 𝑑 is an hyperparameter.

1.4.2.1 Selectional Preferences
Selectional preferences is a simple formalism that purposes to encode each
relation with two linear maps assessing the predisposition of an entity to
appear as the head or tail of a relation in a true fact. This can be done
using an energy formalism, where the energy of a fact is defined as:

𝜓sp(𝑒1, 𝑟, 𝑒2) = 𝒖𝖳
𝑒1
𝒂𝑟 + 𝒖𝖳

𝑒2
𝒃𝑟 (1.12)

with 𝑨,𝑩 ∈ ℝℛ×𝑑 two matrices encoding the preferences of each relation
for certain entities. This energy function can then be used to define the
probability that a fact holds using a softmax:

𝑃(𝑒1, 𝑟, 𝑒2) ∝ exp𝜓sp(𝑒1, 𝑟, 𝑒2), (1.13)

this is sufficient for entity and relation predictions as we can usually com-
pute the partition function over the set of all entities or relations. If this
is not feasible, a technique such as nce (Section 1.2.1.2) or negative sam-
pling (Section 1.2.1.3) can be used to approximate Equation 1.13. Still,
selectional preferences do not encode the interaction of the head and tail
entities. As such it is quite weak for entity prediction, thus more expressive
models are needed.

1.4.2.2 rescal
rescal (Nickel et al. 2011) purposes to model relations by a bilinear form Nickel et al., “A Three-Way Model

for Collective Learning on Multi-
Relational Data” icml 2011

ℰ× ℰ ↦ ℝ in the semantic space of entities. In other words, each relation
𝑟 ∈ ℛ is represented by a matrix 𝑪𝑟 ∈ ℝ𝑑×𝑑 with the training algorithm
seeking to enforce the following property:

𝒖𝖳
𝑒1
𝑪𝑟𝒖𝑒2

= {1 if 𝑒1 𝑟 𝑒2 holds
0 otherwise.

https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
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This can be seen as trying to factorize the tensor of facts 𝙓 as 𝑼𝘾𝑼𝖳,
where 𝙓 ∈ {0, 1}ℰ×ℛ×ℰ with 𝑥𝑒1𝑟𝑒2

= 1 if 𝑒1 𝑟 𝑒2 holds and 𝑥𝑒1𝑟𝑒2
= 0

otherwise. The parameters of the models 𝑼 and 𝘾 are trained using an al-
ternating least-squares approach, minimizing a regularized reconstruction
loss:

ℒrescal(𝙓;𝑼,𝘾) = 1
2

∑
𝑒1,𝑒2∈ℰ

𝑟∈ℛ

(𝑥𝑒1𝑟𝑒2
−𝒖𝖳

𝑒1
𝑪𝑟𝒖𝑒2

)2 + 1
2
𝜆(‖𝑼‖2

𝐹 +∑
𝑟∈ℛ

‖𝑿𝑟‖2
𝐹)

(1.14)
Using bilinear forms allows rescal to capture entities interactions for

each relation in a simple manner. However, the number of parameters to
estimate grows quadratically with respect to the dimension of the semantic
space 𝑑. This can be prohibitive as a large 𝑑 is needed to ensure accurate
modeling of the entities.

1.4.2.3 TransE
To find a balance between the number of parameters and the expressive-
ness of the model, geometric approaches were developed starting with
TransE (Bordes et al. 2013). TransE proposes to leverage the regularity Bordes et al., “Translating Embed-

dings for Modeling Multi-relational
Data” neurips 2013

exhibited by Figure 1.1 to embed both entities and relations in the same
vector space. Formally, its assumption is that relations can be represented
as translations between entities’ embeddings. In addition to representing
each entity 𝑒 by an embedding 𝒖𝑒 ∈ ℝ𝑑, each relation 𝑟 is also embedded
as a translation in the same space as 𝒗𝑟 ∈ ℝ𝑑. The idea being that if
𝑒1 𝑟 𝑒2 holds then 𝒖𝑒1

+ 𝒗𝑟 ≈ 𝒖𝑒2
. The authors argue that translations

can represent hierarchical data by drawing a parallel with the embedding
of a tree in an Euclidean plane—that is the usual representation of a tree
as drawn on paper. As long as the distance between two levels in the tree
is large enough, the children of a node are close together; this not only
allows for the representation of one-to-many relations “child” but also for
the many-to-many, symmetric and transitive relation “sibling” as the null
translation.

In order to enforce the translation property, a margin-based loss is
used to train an energy-based model. The energy of true triplets drawn
from the knowledge base is minimized, while negative triplets are sampled
and have their energy maximized up to a certain margin. Given a positive
triplet (𝑒1, 𝑟, 𝑒2) and a negative triplet (𝑒′

1, 𝑟, 𝑒
′
2), the TransE loss can be

expressed as:

ℒte(𝑒1, 𝑟, 𝑒2, 𝑒′
1, 𝑒

′
2) = max (0, 𝛾 + 𝛥(𝒖𝑒1

+ 𝒗𝑟, 𝒖𝑒2
) − 𝛥(𝒖𝑒′

1
+ 𝒗𝑟, 𝒖𝑒′

2
)) ,

(1.15)
where 𝛥 is a distance function such as the squared Euclidean distance
𝛥(𝒖𝑒1

+ 𝒗𝑟, 𝒖𝑒2
) = ‖𝒖𝑒1

+ 𝒗𝑟 − 𝒖𝑒2
‖2

2. The negative triplets (𝑒′
1, 𝑟, 𝑒

′
2) are

sampled by replacing one of the two entities of (𝑒1, 𝑟, 𝑒2) by a random one
which is sampled uniformly over all possible entities:

𝑁(𝑒1, 𝑒2) ={(𝑒1, 𝑒′) with probability 50%
(𝑒′, 𝑒2) with probability 50%

with 𝑒′ ∼ 𝒰(ℰ).

Since 𝑑 is a distance, when the loss ℒte is perfectly minimized, the
positive part +𝛥(𝒖𝑒1

+ 𝒗𝑟, 𝒖𝑒2
) is 0. This means that the negative part

https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
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−𝛥(𝒖𝑒′
1
+𝒗𝑟, 𝒖𝑒′

2
) contributes to the loss only when it is smaller than the

margin 𝛾. Since this criterion depends on the distance between entities,
it can easily be optimized by increasing the entity embeddings norms. To
avoid this degenerate solution, the entity embeddings are renormalized
at each training step. The training loop and initialization procedure are
detailed in Algorithm 1.2. Parameters 𝑼 and 𝑽 are optimized by stochastic
gradient descent with early-stopping based on validation performance.

algorithm TransE
Inputs: 𝒟kb knowledge base

𝛾 margin
𝑑 embedding dimension
𝑏 batch size

Outputs: 𝑼 entity embeddings
𝑽 relation embeddings

▷ Initialization ◁
𝑼 ← 𝒰|ℰ|×𝑑 (− 6√

𝑑
, 6√

𝑑
)

𝑽 ← 𝒰|ℛ|×𝑑 (− 6√
𝑑

, 6√
𝑑

)
∀𝑟 ∈ ℛ ∶ 𝒗𝑟 ← 𝒗𝑟/‖𝒗𝑟‖2
▷ Training ◁
loop

∀𝑒 ∈ ℰ ∶ 𝒖𝑒 ← 𝒖𝑒/‖𝒖𝑒‖2
𝐵 ← ∅
for 𝑖 = 1, … , 𝑏 do

Sample (𝑒1, 𝑟, 𝑒2) ∼ 𝒰(𝒟kb)
Sample (𝑒′

1, 𝑒′
2) ∼ 𝑁(𝑒1, 𝑒2)

𝐵 ← 𝐵 ∪ {(𝑒1, 𝑟, 𝑒2, 𝑒′
1, 𝑒′

2)}
Update 𝑼 and 𝑽 w.r.t.

∇ ∑
(𝑒1,𝑟,𝑒2,𝑒′

1,𝑒′
2)∈𝐵

ℒte(𝑒1, 𝑟, 𝑒2, 𝑒′
1, 𝑒′

2)

output 𝑼, 𝑽

Algorithm 1.2: The TransE training al-
gorithm. The relations are initialized
randomly on the sphere but are free
to drift away afterward, while entities
are renormalized at each iteration. The
loop updates parameters 𝑼 and 𝑽 us-
ing gradient descent and is stopped
based on validation score. The gradi-
ent of ℒte is computed from Equa-
tion 1.15.

Evaluation The quality of the embeddings can be evaluated by measur-
ing the accuracy of entity prediction based on them. Given a true triplet
(𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb, the energy 𝛥(𝒖𝑒′ + 𝒗𝑟, 𝒖𝑒2

) is computed for all possible
entities 𝑒′ ∈ ℰ. The entity minimizing the energy is predicted as complet-
ing the triplet. The same procedure is then applied on 𝑒2. The correct
entity minimizes the energy quite rarely, therefore in order to have a more
informative score Bordes et al. (2013) reports the mean rank of the cor-
rect entity among all the entities ranked by the energy of their associated
triplets. For reference, on WordNet, the mean rank of the correct entity is
263 among 40 943 entities.

When expanding the expression 𝛥(𝒖𝑒1
+ 𝒗𝑟, 𝒖𝑒2

) where 𝑑 is the Eu-
clidean distance, the main term ends up being 𝒖𝖳

𝑒1
𝒖𝑒2

+𝒗𝖳
𝑟(𝒖𝑒2

−𝒖𝑒1
). As

such, TransE captures all 2-way interactions between 𝑒1, 𝑟 and 𝑒2. How-
ever, this means that 3-way interactions are not captured, this is how-
ever standard in information extraction. Furthermore, TransE is unable
to model several symmetric relations (when 𝑟 = ̆𝑟). To solve these prob-
lems, other geometric transformations were proposed to improve TransE
expressiveness, such as first projecting entities on a hyperplane (TransH,
Z. Wang et al. 2014) or having the entities and relations live in different
spaces (TransR, Y. Lin et al. 2015). Finally, all the methods mentioned
in this section are not only useful for entity and relation predictions, but
also as methods to obtain distributed representations of knowledge bases
entities and relations. The matrices 𝑼 and 𝑽 learned by TransE can sub-
sequently be used for other tasks involving knowledge bases, in the same
way that transfer learning is used to obtain distributed representations of
text using language models (Section 1.3.4.3).

1.5 Conclusion
As exposed in Section 1.1, we are in the middle of a transition away from
symbolic representations towards distributed ones. We inscribe this thesis
within this transition. We deal with two kinds of symbolic representations
of meaning: unstructured language and structured knowledge bases. In
this chapter, we presented methods to extract distributed representations
for both of these systems. While in the following chapters, we will deal
with the link between language and knowledge bases.

Following word2vec (Section 1.2.1), feature extraction for textual in-
puts is now mostly done through word embeddings. In order to obtain a
representation of a sentence, the models on top of these word embeddings
progressively evolved from cnn (Section 1.3.1) and rnn (Section 1.3.2) to-
wards transformers and contextualized word embeddings (Section 1.3.4).
As we will see in the next chapter, this trend was exactly followed by
relation extraction models.
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We then introduce the structured knowledge representation we handle
throughout this thesis, knowledge bases. In particular, Section 1.4.1 gives
a formal notation for handling relations which we use to write modeling
hypotheses in subsequent chapters. Finally, Section 1.4.2 presents common
models making use of distributed representations of knowledge bases for
the task of knowledge base completion. This task is not only the usual
evaluation framework for distributed knowledge base representations but
is also of special interest for Chapter 3, where we leverage the similarity
between the knowledge base completion and the relation extraction tasks.

The progression of models presented in this chapter also reflects a
progression of the scale of problems. We started by exploring the repre-
sentation of words, one of the smallest semantic units, then moved on
to sentences, then to knowledge bases, which purpose to represent whole
pans of human knowledge. Another underlying thread to this chapter is
the notion of relationship. While the idea is quite pervasive in Section 1.4,
it is also present in Section 1.2 through the not-so-randomly chosen ex-
ample of Figure 1.1.28 Even in Section 1.3, representations of sentences 28 This figure presented the word em-

beddings of some countries and their
capitals. The relationship between the
words seems to bear the same regu-
larity as the relationship between the
underlying entities. This regularity be-
ing representative of the capital of re-
lationship.

are obtained by modeling the relationship of words with each other. For
example, in a transformer, the attention weights capture the relationship
between two words: the query and one element of the memory.

In the next chapter, we make the link between the two symbolic rep-
resentations of meaning we studied: language and knowledge bases. More
specifically, we present relation extraction models. State-of-the-art mod-
els build heavily on the distributed representations methods introduced in
this chapter and are the main focus of this thesis.
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Chapter 2

Relation Extraction

“ When two objects, qualities,
classes, or attributes, viewed together
by the mind, are seen under some con-
nexion, that connexion is called a re-
lation.

— Augustus De Morgan, “On the
Syllogism, No. III, and on
Logic in general” (1864, p. 203)

“Hard constraints are the midwife
to good design.

— Maciej Cegłowski, Web De-
sign: The First 100 Years
(2014)

The rapid increase in the amount of published information brings for-
ward the problem of how to handle large amounts of data. To this goal,
information extraction aims at discovering the underlying semantic struc-
ture of texts. As such, it is considered to be a part of natural language
understanding. It is the link from unstructured text to structured data.
Following Section 1.4, we will use knowledge bases as a formalization of
structured data. However, to encompass the notion of information more
appropriately, the concept of knowledge base needs to be taken in a broad
sense. The strict definition of knowledge underlying most knowledge bases
only includes general facts and does not encompass things such as “Seneca
is contemptuous even of the best garum.” However, this sentence conveys
a piece of information that needs to be considered by information extrac-
tion systems. As such, we will consider text-specific facts such as “Seneca
dislikes garum” to be facts belonging in a knowledge base.

In this thesis, we focus on relation extraction, a subtask of information
extraction. Precursors of relation extraction were the template filling tasks. In contrast to relation extraction,

when filling a template about an en-
tity, the template has a fixed number
of fields to be filled, in the language of
Section 1.4.1, this means that all rela-
tions are left-total: 𝑟 • ̆𝑟 = 𝑟 • ̆𝑟 ∪ 𝑰.

In these tasks, objects corresponding to a given class—usually a specific
kind of event—must be extracted from a text, and a template must be filled
with information about this object. This was pioneered by Sager (1972)

Sager, “Syntactic Formatting of Sci-
ence Information” afips 1972

but started gathering interest with the message understanding conferences
(muc) supported by darpa.29 The template filling task was formalized

29 The Defense Advanced Research
Projects Agency, a research agency of
the usa Department of Defense.

and evaluated in a systematic way starting with muc-230 in 1989. But it

30 At the time, the conference was
known as muck-ii.

was not until 1997 that muc-7 formalized the modern relation extraction
task. The mucs were succeeded by the automatic content extraction (ace)
program convened by the nist31 starting in 1999.

31 The National Institute of Standards
and Technology, an agency of the usa
Department of Commerce.

The main information extraction task is known as knowledge base pop-
ulation and consists in generating knowledge base facts from a set of doc-
uments. This task can be broken down into several steps, as illustrated by
Figure 2.1:

Entity chunking seeks to locate entities in text. A similar task is named
entity recognition (ner) which not only locates the entities but also
assigns them with a type such as “organization,” “person,” “loca-
tion,” etc. The relation extraction datasets we consider in subsequent
chapters do not include this entity-type information. However, ner
was more prevalent in relation extraction works during the 2000s
decade.

Entity linking assigns a knowledge base entity identifier to a tagged

https://dl.acm.org/doi/pdf/10.1145/1480083.1480101
https://dl.acm.org/doi/pdf/10.1145/1480083.1480101
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entity in a sentence. This disambiguates “Paris, France” Q90, from
“Paris, son of Priam, king of Troy” Q167646 and “Paris, genus of the
true lover’s knot plant” Q162121. Following the above discussion on
our broad sense of knowledge, an entity may not necessarily appear
in an existing knowledge base, in which case the entity identifier can
be taken to be the entity’s surface form.

Relation extraction assigns a knowledge base relation identifier to an
ordered pair of tagged entities in a sentence. Paris is not only the
capital of France, it is also located in France. However, the sentence
of Figure 2.1 does not convey the idea of location but the one of
capital, thus predicting “located in country” P17 would be incorrect
there.

is the capital ofParis France

Q90 Q142P1376

1 Entity
chunking

2 Entity
linking

3 Relation
extraction

Figure 2.1: The three standard tasks
for knowledge base population. First,
entity chunking locates the entities
in the sentence, here “Paris” and
“France.” Second, entity linking map
each entity to a knowledge base identi-
fier, here Q90 and Q142. Third, relation
extraction find the relation linking the
two entities, here P1376 (capital of ).

Whereas Chapter 1 introduces the main tools used in relation extrac-
tion systems, the present chapter focuses on the relation extraction task
itself. We formally define relation extraction in Section 2.1 and introduce
its main variants encountered in the literature. A fundamental problem
of relation extraction models is how to obtain supervision. Hand label-
ing a dataset is tedious and error-prone, so several alternative supervision
techniques have been considered over the years; this is the focus of Sec-
tion 2.2. We then introduce noteworthy supervised approaches–including
weakly and semi-supervised ones—in Sections 2.3 and 2.4. As we will see
in Section 2.1, the task can be tackled at the sentence level or at a higher
level. Section 2.3 introduces sentence-level models, while Section 2.4 in-
troduces higher-level models. Lastly, we delve into the main subject of
this thesis, unsupervised relation extraction, in Section 2.5. Each of these
sections is generally ordered following historical development, with older
methods appearing first and current state-of-the-art appearing last.

2.1 Task Definitions
The relation extraction task was shaped by several datasets with different
goals. The first mucs focused on detecting naval sightings and engage-
ment in military messages. Subsequent conferences moved towards the
extraction of business-related relations in news reports. Nowadays, gen-
eral encyclopedic knowledge is usually extracted from either news reports
or encyclopedia pages. Another common goal is to extract drugs, chemi-
cal and symptoms interactions in biomedical texts (Lee et al. 2019). For
further details, Appendix C contains a list of datasets with information
about the source of the text and the nature of the relations to be extracted.
Depending on the end-goal for which relation extraction is used, different
definitions of the task might be more fitting. We now formally define the
relation extraction task and explore its popular variants. For ease of notation, we changed the

placement of entities in the tuple cor-
responding to a fact from the one used
in Section 1.4. This will allow us to re-
fer to the entity pair as 𝒆 ∈ ℰ2.

In relation extraction, we assume that information can be represented
as a knowledge base 𝒟kb ⊆ ℰ2×ℛ as defined in Section 1.4. In addition to
the set of entities ℰ and the set of relations ℛ, we need to define the source
of information from which to extract relations. The information source
can come in several different forms, but we use a single basic definition on
sentences which we can refine later on. We assume entity chunking was
performed on our input data. We only deal with binary relations32

32 As described in Section 1.4.1, this
means that only relations between
two entities are considered. Moreover,
higher-arity relations can be decom-
posed into sets of binary ones.

since
they are the ones commonly encoded in knowledge bases. We can therefore

https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q167646
https://www.wikidata.org/wiki/Q162121
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q142
https://www.wikidata.org/wiki/Property:P1376
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q142
https://www.wikidata.org/wiki/Property:P1376
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define 𝒮 as a set of sentences with two tagged and ordered entities:

𝒮 = {“Jan Kasl𝑒1
became mayor of Prague𝑒2

.”,
“Vincent Callebaut𝑒2

was born in 1977 in Belgium𝑒1
.”,

… }.

In this example, two sentences are given; in each sentence, the relation Relation extraction can also be per-
formed on semi-structured documents,
such as a Wikipedia page with its in-
fobox or an html page that might con-
tain lists and tables. This is the case
of dipre presented in Section 2.3.2. As
long as the semi-structured data can be
represented as a token list, and stan-
dard text models can still be applied.

we seek is the one between the two entities marked by underlines. The
entities need to be ordered since most relations are asymmetric (𝑟 ≠ ̆𝑟).
In practice, this means that one entity is tagged as 𝑒1 and the other as
𝑒2. The standard setting is to work on sentences; this can of course be
generalized to larger chunks of text if needed.

The tagged entities inside the sentences of 𝒮 are not the same as entities
in knowledge bases. They are merely surface forms. These surface forms
are not sensu stricto elements of ℰ. Indeed, the same entity can have
several different surface forms, and the same surface form can be linked
to several different entities depending on context. To map these tagged
surface forms to ℰ, entity linking is usually performed on the corpus. In
practice, this means that we consider samples from 𝒮 × ℰ × ℰ. Finally,
since the two tagged entities are ordered, we simply assume that the first
entity in the tuple corresponds to the entity tagged 𝑒1 in the sentence,
while the second entity refers to 𝑒2.33 If entity linking is not performed 33 Note that 𝑒2 can appears before 𝑒1

in the sentence.on the dataset, we can simply assume that the surface forms are actually
entities, in this case, and in this case alone, ℰ is a set of surface forms.
This is somewhat uncommon, the standard practice being to have linked
entities.

Also, note that this setup is still valid for sentences with three or more
entities, as we can consider all possible entity pairs:

𝒮 = {“Alonzo Church𝑒1
was born on June 14, 1903, in Washington,

D.C.𝑒2
, where his father, Samuel Robbins Church, was the judge

of the Municipal Court for the District of Columbia.”,
“Alonzo Church𝑒2

was born on June 14, 1903, in Washington,
D.C., where his father, Samuel Robbins Church𝑒1

, was the judge
of the Municipal Court for the District of Columbia.”,
…}.

In this example, we give two elements from 𝒮, these elements are different
since their markings 𝑒 differ. We often use the word sentence without
qualifications to refer to elements from 𝒮. Still, even though the two sen-
tences above are the same in the familiar sense of the term, they are
different in our definition.

Now, given a sentence with two tagged, ordered, and linked entities, we
can state the goal of relation extraction as finding the semantic relation
linking the two entities as conveyed by the sentence. Since the set of pos-
sible relations is designated by ℛ, we can sum up the relation extraction
task as finding a mapping taking the form:

𝑓sentential ∶ 𝒮 × ℰ2 → ℛ (2.1)

When we have access to a supervised dataset, all the information (head
entity, relation, tail entity, conveying sentence) is provided. Table 2.1 gives
some supervised samples examples. We denote a dataset of sentences with
tagged, ordered, and linked entities as 𝒟 ⊆ 𝒮×ℰ2 and a supervised dataset
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Head Relation Tail Sentence

Q210175
mi5

P159
headquarters
location

Q198519
Thames
House

The exterior and interior of Freemasons’
Hall continued to be a stand-in for
Thames House𝑒2

, the headquarters of
mi5𝑒1

.

Q210175
mi5

P101
field of work

Q501700
counter-
intelligence

Golitsyn’s claims about Wilson were
believed in particular by the senior
mi5𝑒1

counterintelligence𝑒2
officer Peter

Wright. Wright, Peter (1987)

Q158363
smersh

P101
field of work

Q501700
counter-
intelligence

In its counter-espionage𝑒2
and

counter-intelligence roles, smersh𝑒1
appears to have been extremely
successful throughout World War II.

Q198519
Thames
House

P466
occupant

Q210175
mi5

The Freemasons’ Hall in London served
as the filming location for Thames
House𝑒1

, the headquarters for mi5𝑒2
.

Table 2.1: Samples from the FewRel
dataset. The surface forms in the head,
relation and tail columns are only
given for ease of reading and are usu-
ally not provided.

as 𝒟ℛ ⊆ 𝒟×ℛ. Given an entity pair 𝒆 = (𝑒1, 𝑒2), a sample in which these
entities appear (𝑠, 𝑒1, 𝑒2) is called a mention. A sample which convey a
fact 𝑒1 𝑟 𝑒2 is called an instance of 𝑟. Mentions as defined here can be called

“entity mentions,” while instances may
be referred to as “relation mentions.”

The relation extraction task as stated by Equation 2.1 is called senten-
tial extraction. It is the traditional relation extraction setup, the sentences
are considered one by one, and a relation is predicted for each sentence
separately. However, information can be leveraged from the regularities of
the dataset itself. Indeed, some facts can be repeated in multiple sentences,
in which case a model could enforce some kind of consistency on its pre-
dictions. Even beyond a simple consistency of the relations predicted, in
the same fashion that a word can be defined by its context, so can an en-
tity. This kind of regularities can be exploited by modeling a dependency
between samples even when conditioned on the model parameters. While
tackling relation extraction at the sentence level might be sufficient for
some datasets, others might benefit from larger context, especially when
the end goal is to build a knowledge base containing general facts. This
gives rise to the aggregate extraction setting, in which a set of tagged sen-
tences is directly mapped to a set of facts without a direct correspondence
between individual sentences and individual facts. The left-hand side of Equation 2.2 is a

subset of 𝒮 × ℰ2, that is 𝒟 or a sub-
set thereof. On the right-hand side, we
have a subset of ℰ2 × ℛ; we tintend to
find 𝒟kb or a subset thereof. However,
each individual sample (𝑠, 𝒆) ∈ 𝒟 does
not need to be mapped to an individ-
ual fact (𝒆, 𝑟) ∈ 𝒟kb.

𝑓aggregate ∶ 2𝒮×ℰ2 → 2ℰ2×ℛ (2.2)

Quite often in this case, the problem is tackled at the level of entity pairs,
meaning that instead of making a prediction from a sample in 𝒮×ℰ2, the
prediction is made from 2𝒮 ×ℰ2. This setup is required for multi-instance
approaches presented in Section 2.4.2. Aggregate extraction may impose
a relatively more transductive approach34 since predictions rely directly 34 Transductive approaches are con-

trasted to inductive approaches. In
the inductive approach—such as neu-
ral networks—parameters 𝜽 are esti-
mated from the training set. When
labeling on an unknown sample, the
model makes its prediction only from
parameters 𝜽 and the unlabeled sam-
ple, access to the training set is no
longer necessary. This is called induc-
tion since “rules” (𝜽) are obtained
from examples. On the other hand,

on previously observed samples. Usually, aggregate models still extract
some form of prediction at the sentence level, even if they do not need to.
Therefore, the key point of aggregate approaches is the explicit handling of
dataset-level information. Some models may heavily depend on this global
information, to the point that they cannot be trained without some form of
repetition in the dataset. The sentential–aggregate distinction constitutes
a spectrum. While all unsupervised methods exhibit some aggregate traits,
they do not necessarily exploit as much structural information as they
could; this is the key point of Chapter 4.
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2.1.1 Nature of Relations in the transductive approach–such as
k-nn—observations on the train set
are directly transferred to test samples
without first generalizing to a set of
rules.

The supervised relation extraction task described above is quite generic.
The approaches to tackle it in practice vary quite a lot depending on the
specific nature of the facts we seek to extract and the corpus structure. In
this subsection, we present some variations on the nature of ℛ commonly
encountered in the literature.

2.1.1.1 Unspecified Relation:Other
The set ℛ is built using a finite set of labels. These labels do not describe
the relationship between all entities in all possible sentences. Indeed some
entities are deemed unrelated in some sentences. A distinction is some-
times made between relation extraction and relation detection, depending
on whether a relation is assumed to exist between the two entities in a
sentence or not. This apparent absence of relation is often called “other,”
since a relation between the two entities might exist but is simply not
present in the relation schema considered (Hendrickx et al. 2010). In this Hendrickx et al., “SemEval-2010 Task

8: Multi-Way Classification of Seman-
tic Relations between Pairs of Nomi-
nals” SemEval 2010

case, we can still use the usual relation extraction setup by augmenting ℛ
with the following relation:

We use the notation of Section 1.4.1
where ̄𝑟 refers to the complementary
relation of the named relations 𝑟 in
the schema ℛ. Note that using the
definition of relations as a set of en-
tity pairs is not strictly correct here
since two entities may be linked by a
relation that is simply not conveyed
by a specific sentence containing them.
The underlying problem to this nota-
tional conundrum is the fact that other
is only needed for mono-relation ex-
traction when one and exactly one re-
lation must be predicted for a sam-
ple; see Section 2.4.2 for an alternative.
The definition given in Equation 2.3 is
nonetheless fitting to the widespread
distant supervision setting which we
describe Section 2.2.2.

other = ⋂
𝑟∈ℛ

̄𝑟. (2.3)

However note that “other” is not a relation like the others, it is defined
by what it is not instead of being defined by what it is. This peculiarity
calls for special care on how it is handled, especially during evaluation.

2.1.1.2 Closed-domain Assumption
As stated above, the set ℛ is usually built from a finite set of labels such as
parent of and part of. This is referred to as the closed-domain assumption.
Another approach is to consider ℛ is not known beforehand (Banko et
al. 2007). In particular open information extraction (oie, Section 2.5.2)

Banko et al., “Open Information Ex-
traction from the Web” ijcai 2007

directly uses surface forms as relation labels. In this case, the elements of
ℛ are strings of words, not defined in advance, and even potentially not-
finite. We can see oie as a preliminary task to relation extraction: the set
of surface forms can be mapped to a traditional closed-set of labels. When
ℛ is not known beforehand, the relation extraction problem can be called
open-domain relation discovery. This is the usual setup for unsupervised
relation extraction described in Section 2.5.

2.1.1.3 Directionality and Ontology
Most relations 𝑟 are not symmetric (𝑟 ≠ ̆𝑟). There are several different
approaches to handle this asymmetry. In the SemEval 2010 Task 8 dataset
(Section C.6), the first entity in the sentence is always tagged 𝑒1, and the
second is always tagged 𝑒2. The relation set ℛ is closed under the converse
operation (Hendrickx et al. 2010):

∀𝑟 ∈ ℛ ∶ ̆𝑟 ∈ ℛ.

This is the most common setup. In this case, the relation labels incor-
porate the directionality; for example, the SemEval dataset contains both
cause–effect(𝑒1, 𝑒2) and cause–effect(𝑒2, 𝑒1) depending on whether the first

https://aclanthology.org/S10-1006
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entity appearing in the sentence is the cause or the effect. This means
that given a 𝑟 ∈ ℛ in the SemEval dataset, we can easily query the cor-
responding ̆𝑟. On the other hand, the relation set of the FewRel dataset
(Section C.2) is not closed under the converse operation (Han et al. 2018). Han et al., “FewRel: A Large-Scale

Supervised Few-Shot Relation Classi-
fication Dataset with State-of-the-Art
Evaluation” emnlp 2018

Furthermore, it is a mono-relation dataset without other. This means that
all samples (𝑠, 𝑒1, 𝑒2) ∈ 𝒟 convey a relation between 𝑒1 and 𝑒2. Naturally,
in this case, the entity tagged 𝑒2 may appear before the one tagged 𝑒1.
And indeed, for relations that do not have their converse in ℛ, the same
sentence 𝑠 with the tags reversed may not appear in the FewRel dataset
since this would need to be categorized as ̆𝑟 ∉ ℛ.

In general, the order of 𝑒1 and 𝑒2 is not fixed. This is particularly true
in the open-domain relation setup, when ℛ being unknown, can not be
equipped with the converse operation. In this case, it is common to feed
the samples in both arrangements: with the first entity tagged 𝑒1 and the
second 𝑒2, and the reverse: with the first entity tagged 𝑒2 and the second
𝑒1. This can be seen as a basic data augmentation technique.

More generally, the relation set ℛ might possess a structure called a
relation ontology. This is especially true when ℛ comes from a knowledge
base such as Wikidata (Vrandečić and Krötzsch 2014). In this case, ℛ
can be equipped with several operations other than the converse one. For
example, Wikidata endows ℛ with a subset operation, the relation par-
ent organization P749 is recorded as a subset of part of P361, such that
𝑒1 parent organization 𝑒2 ⟹ 𝑒1 part of 𝑒2, or using the notation of
Section 1.4.1: parent organization ∪ part of = part of.

2.1.2 Nature of Entities
The approach to tackle the relation extraction task also quite heavily
depends on the nature of entities. In particular, an important distinction
must be made on whether the unique referent assumption is postulated.
This has been the case in most examples given thus far. For instance, “Alan
Turing” designates a single human being, even if several people share this
name; we only designate one of them with the entity Q7251 “Alan Turing.”
However, this is not always the case, for example, in the following sample
from the SemEval 2010 Task 8 dataset: SemEval 2010 Task 8 is one of those

datasets without entity linking, which
is rather common when dealing with
non-unique referents.

The key𝑒1
was in a chest𝑒2

.
Relation: content–container(𝑒1, 𝑒2)

In this case, the entities “key” and “chest” do not always refer to the same
object. The relation holds in the small world described by this sentence,
but it does not always hold for every object designated by “key”. This is
closely related to the fineness of entity linking. Indeed, one could link the
surface form “key” above with an entity designating this specific key, but
this is not always the case, as exemplified by the SemEval 2010 Task 8
dataset. This distinction is pertinent to the relation extraction task, es-
pecially in the aggregate setting. When applied to entities with a unique
referent, the content–container(𝑒1, 𝑒2) relation is 𝑁 → 1 or at least transi-
tive. However, when the unique referent assumption is false, this relation
is not 𝑁 → 1 anymore since several “key” entities can refer to different
objects located in different containers.

The aggregate setup is not necessar-
ily contradictory with the unique ref-
erent assumption. Even though not
all “keys” are in a “chest,” this fact
still gives us some information about
“keys,” in particular they can be in a
“chest,” which is not the case of all en-
tities.

The unique referent assumption is not binary; the distinction is quite
fuzzy in most cases. Should the entity Q142 “France” refers both to the
modern country and to the twelfth-century kingdom? What about the
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West Frankish Kingdom? How should we draw the distinction? Instead of
categorizing the model on whether they take the unique referent assump-
tion for granted, we should instead look at their capacity to capture the
kind of relationship between a key and a chest as conveyed by the above
sample. More generally, all the usual properties

of grammatical nouns can lead to vari-
ations of the relation extraction task.
For example, many models focus on
rigid designators such as “Lucius Ju-
nius Brutus” which are opposed to flac-
cid designators such as “founder of the
Roman Republic.” Both refer to the
same person Q223440. However, it is
possible to imagine a world where the
“founder of the Roman Republic” does
not refer to Q223440. On the contrary,
if Q223440 exists, “Lucius Junius Bru-
tus” ought to refer to him.

Finally, another variation of the definition of entities commonly en-
countered in relation extraction comes from coreference resolution. Some
datasets resolve pronouns such that in the sentence “She𝑒 died in Maryle-
bone,” the word “she” can be considered an entity linked to Q7259 “Ada
Lovelace” if the context in which the sentence appears supports this. In
this case, the surface form of the entity gives little information about the
nature of the entity. This can be problematic for models relying too heavily
on entities’ surface forms. In particular, early relation extraction models
did not have access to entity identifiers; at the time, pronoun entities were
avoided altogether.

2.2 The Problem of Data Scarcity
Ideally, a labeled dataset should be available for the source language and
target relation domain ℛ, but alas, this is rarely the case. In particular,
the order of ℛ can range in the thousands, in which case, accurate labeling
is tedious for human operators. To circumvent this problem, alternative
supervision strategies have been used.

Despite the ubiquity of the terms, it is not easy to define the dif-
ferent forms of supervision clearly. We use the following practical defini-
tion: a dataset is supervised if among its features, one—the labels—must
be predicted from the others. Furthermore, to distinguish with the self-
supervised setup, we need to impose that the labels must be somewhat
hard to obtain, typically through manual annotation.35

35 To add to the confusion, the dis-
tinction between self-supervised and
unsupervised is not necessarily perti-
nent, e.g. Yann LeCun retired “unsu-
pervised” from his vocabulary, replac-
ing it with “self-supervised” (LeCun
and Misra 2021). In this case, the diffi-
culty of obtaining the labels might be
the sole difference between the “unsu-
pervised/self-supervised” and “super-
vised” setups.

For our task at
hand, a supervised dataset takes the form 𝒟ℛ ⊆ 𝒮×ℰ2×ℛ, indeed we seek
to predict relation labels and obtaining those is tedious and error-prone.
On the other hand, an unsupervised dataset takes the form 𝒟 ⊆ 𝒮 × ℰ2,
which is much easier to obtain: vast amounts of text are now digitized and
can be processed by an entity chunker and an entity linker. An intermedi-
ate supervision setting is semi-supervision when a small subset of samples
are supervised while other are left unsupervised, which can be stated as
𝒟semi ⊆ 𝒮 × ℰ2 × (ℛ ∪ {𝜀}).36

36 Here, we denote by 𝜀 the absence of
labels for a sample since this is often
reflected by an empty field.

Despite these different kinds of datasets on which a relation extrac-
tion model can be trained, evaluating such a model is nearly always done
using a supervised dataset 𝒟ℛ. In this section, we present two other ap-
proaches to train a model without manual labeling: bootstrap and distant
supervision.

2.2.1 Bootstrap

algorithm bootstrap
Inputs: 𝒟 unlabeled dataset

𝑂 or 𝑅 seed
Outputs: 𝑂 occurrences

𝑅 rules

Start with either 𝑂 or 𝑅
loop

𝑂 ← {𝑥 ∈ 𝒟 ∣ 𝑅 matches on 𝑥}
𝑅 ← induce rules from

occurrences 𝑂
output 𝑂, 𝑅

Algorithm 2.1: The bootstrap algo-
rithm. Occurrences are simply a set
of samples 𝑂 ⊆ 𝒟 conveying the tar-
get relation. The algorithm can be ei-
ther seeded with a set of occurrences 𝑂
(Brin 1999) or a set of rules 𝑅 (Hearst
1992). When starting with a set of
occurrences, the algorithm must first
start by extracting a set of rules, then
alternate between finding occurrences
and rules as listed.

Another method to deal with the scarcity of data is to use bootstrap. Early
approaches to relation extraction often focused on a single relation and
fell into this category of bootstrapped methods. The bootstrap process
(Algorithm 2.1) starts with a small amount of labeled data and finds
extraction rules by generalizing to a large amount of unlabeled data. As
such, it is a semi-supervised approach. We now describe this algorithm by
following the work that pioneered this approach.
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Hearst (1992) propose a method to detect a single relation between
noun phrases: hyponymy. They define 𝑒1 to be an hyponym of 𝑒2 when the
sentence “An 𝑒1 is a (kind of) 𝑒2.” is acceptable to an English speaker. This
relation is then detected inside a corpora using lexico-syntactic patterns
such as:37 37 The syntax used here is inspired

by regular expression: “()” are used
for grouping, “?” indicates the previ-
ous atom is optional, “|” is used for
alternatives and “*” is the Kleene star
meaning zero or more repetitions.

𝑒1 ,? including (𝑒2,)* (or|and)? 𝑒3
⟹ 𝑒2 hyponym of 𝑒1
⟹ 𝑒3 hyponym of 𝑒1

where the entities 𝑒𝑖 are constrained to be noun phrases. This rule matches
on the following sentence:

All common-law countries, including Canada and England…
⟹ Canada hyponym of Common-law country
⟹ England hyponym of Common-law country

Hearst (1992) proposes the following process: start with known facts Hearst, “Automatic Acquisition of Hy-
ponyms from Large Text Corpora”
coling 1992

such as hyponym(England,Country), find all places where the two enti-
ties co-occur in the corpus and write new rules from the patterns observed,
which allows them to discover new facts to repeat the process with. Be-
side some basic lemmatization—which explains why “countries” became
“country” in the example above—all noun phrases are treated as possible
entities. This is sensible since the end goal of the approach is to generate
new facts for the WordNet knowledge base. In Hearst (1992), writing new
rules was not done automatically but performed manually.

Following equation 2.1, a sentential relation extraction system usually
defines a relation 𝑟 as a subset of 𝒮 × ℰ × ℰ, i.e. relations are conveyed
jointly by sentences and entity pairs. In contrast, Hearst (1992) makes the
following assumption: The assumption of Hearst (1992) is

that there are two morphisms 𝒮 → ℛ
and ℰ2 → ℛ, therefore 𝒟 must have a
form which makes this decomposition
possible: (𝑠, 𝒆) ∈ 𝒟 if and only if 𝑠 and
𝒆 are mapped to the same relation. In
other words, 𝒟 completes the two re-
lation extraction morphisms to a com-
mutative square:

𝒟

ℰ2

𝒮

ℛ

In category theory, this object is called
a pullback and noted ×ℛ. This also
means that given a sample from 𝒟, it
is possible to find its relation without
looking at its sentence or its entities
since either of them is sufficient.

Assumption ℋpullback: It is possible to find the relation conveyed by a
sample by looking at the entities alone and ignoring the sentence; and
conversely by looking at the sentence alone and ignoring the entities.
𝒟 = 𝒮×ℛ ℰ2.

This implies that given a pair of entities, whatever is the sentence in
which they appear, the conveyed relation is the same. On the contrary,
given a sentence, the conveyed relation is always the same, whatever the
entities. As such the representation of a relation is split into two parts:

a set of entity pairs 𝑟ℰ ⊆ ℰ2, which can be represented exactly;

a set of sentences 𝑟𝒮 ⊆ 𝒮, which in Hearst (1992) was represented by a
set of patterns matching only sentences in 𝑟𝒮, such as “𝑒1 ,? including
(𝑒2,)* (or|and)? 𝑒3.”

Given a dataset 𝒟 ⊆ 𝒮 × ℰ2, it is possible to map from 𝑟ℰ to 𝑟𝒮 by
taking all sentences where the two entities appear and vice-versa by taking
all pairs of entities appearing in the given sentences. The second process
ℛ𝒮 × 𝒟 → ℛℰ is straightforward to implement exhaustively. While the
first process ℛℰ ×𝒟 → ℛ𝒮 was performed manually by Hearst (1992).

2.2.2 Distant Supervision
Craven and Kumlien (1999)

Craven and Kumlien, “Constructing
biological knowledge bases by extract-
ing information from text sources”
ismb 1999

introduced the idea of weak supervision to
relation extraction as a compromise between hand labeled dataset and
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unsupervised training. It was then popularized by Mintz et al. (2009) Mintz et al., “Distant supervision for
relation extraction without labeled
data” acl 2009

under the name distant supervision. Their idea is to use a knowledge base
𝒟kb ⊆ ℰ2 × ℛ to supervise an unsupervised dataset 𝒟. The underlying
assumption can be stated as: The use of assumptions or model-

ing hypotheses noted ℋname is cen-
tral to several relation extraction mod-
els, especially unsupervised ones. We
strongly encourage the reader to look
at the list of assumptions in Ap-
pendix B. The appendix provides
counter-examples when appropriate.
Furthermore, it lists the sections in
which each assumption was introduced
for reference.

Assumption ℋdistant: A sentence conveys all the possible relations be-
tween all the entities it contains.
𝒟ℛ = 𝒟 ⋈ 𝒟kb

where ⋈ denotes the natural join operator:

𝒟 ⋈ 𝒟kb = { (𝑠, 𝑒1, 𝑒2, 𝑟) ∣ (𝑠, 𝑒1, 𝑒2) ∈ 𝒟 ∧ (𝑒1, 𝑒2, 𝑟) ∈ 𝒟kb } .

In other words, each sentence (𝑠, 𝑒1, 𝑒2) ∈ 𝒟 is labeled by all relations
𝑟 present between 𝑒1 and 𝑒2 in the knowledge base 𝒟kb. This is sometimes
referred to as an unaligned dataset, since sentences are not aligned with
their corresponding facts. The assumption ℋdistant is quite obviously false,
and is only used to build a supervised dataset. A classifier is then trained
on this dataset. In most works, including the one of Mintz et al. (2009), the
model is designed to handle the vast amount of false positive in 𝒟 ⋈ 𝒟kb,
usually through the aggregate extraction setting (see Section 2.1).

A caveat of distantly supervised datasets is that evaluation is often
complex. Mintz et al. (2009) evaluate their approach on Freebase (Sec-
tion C.3) by holding-out part of the knowledge base. However, the number
of false negatives forces them to manually label the facts as true or false
themselves.

2.3 Supervised Sentential ExtractionModels
In the supervised setup, all variables listed in Table 2.1 are given at train
time. During evaluation, the relation must be predicted from the other
three variables: sentence, head entity and tail entity. The predictions for
each sample can then be compared to the gold standard.38 We introduce 38 When a distant supervision dataset

is used, “gold standard” is somewhat
a misnomer. In this case, the relation
labels are often referred to as a “silver
standard” since they are not as good
as possible.

the commonly used metric for evaluation on a supervised dataset in Sec-
tion 2.3.1. The following sections focus on important supervised meth-
ods, including weakly-supervised and semi-supervised methods. These sec-
tions focus on sentential relation extraction methods, which realize Equa-
tion 2.1. In contrast, Section 2.4 focuses on aggregate methods, which
often build upon sentential approaches.

2.3.1 Evaluation
Since supervised relation extraction is a standard multiclass classification
task, it uses the usual 𝐹1 metric, with one small tweak to handle direction-
ality. As for training, we use samples from 𝒟ℛ ⊆ 𝒮×ℰ2×ℛ for evaluation.
Let’s call 𝑥 ∈ 𝒟 ⊆ 𝒮×ℰ2 an unlabeled sample, and 𝑔∶ 𝒟 → ℛ the function
which associates with each sample 𝑥 its gold label in the dataset (as given
by 𝒟ℛ). Similarly, let’s call 𝑐 ∶ 𝒟 → ℛ the function which associates with
each sample 𝑥 the relation predicted by the model we are evaluating. The
standard 𝐹1 score for a relation 𝑟 ∈ ℛ can be defined as:

precision(𝑔, 𝑐, 𝑟) =
|{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥) = 𝑔(𝑥) = 𝑟 }|

|{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥) = 𝑟 }|
= true positive

predicted positive

https://aclanthology.org/P09-1113
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recall(𝑔, 𝑐, 𝑟) =
|{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥) = 𝑔(𝑥) = 𝑟 }|

|{ 𝑥 ∈ 𝒟 ∣ 𝑔(𝑥) = 𝑟 }|
= true positive

labeled positive

𝐹1(𝑔, 𝑐, 𝑟) =
2

precision(𝑔, 𝑐, 𝑟)−1 × recall(𝑔, 𝑐, 𝑟)−1 .

To aggregate these scores into a single number, multiple approaches are
possible. First of all, micro-averaging: the true positives, predicted posi-
tive and labeled positive are averaged over all relations. In the case where
all samples have one and only one label and prediction, micro-precision,
micro-recall and micro-𝐹1 collapse into the same value, namely the accu-
racy. However, when computing a micro-metric on a dataset containing
the other relation (Section 2.1.1.1), the samples labeled other are ignored,
making the difference between micro-precision and micro-recall relevant
again.

The second set of approaches uses macro-averaging, which means that
the scores are averaged a first time for each relation before taking the
average of these averages over the set of relations. This compensates for
the class imbalance in the dataset since when taking the average of the
averages, the score for a rare class is weighted the same as the score for a
frequent class. The “directed” macro-scores are defined as usual:

−−−−−−→precision(𝑔, 𝑐) = 1
|ℛ|

∑
𝑟∈ℛ

precision(𝑔, 𝑐, 𝑟)

−−−→
recall(𝑔, 𝑐) = 1

|ℛ|
∑
𝑟∈ℛ

recall(𝑔, 𝑐, 𝑟)

−→
𝐹1(𝑔, 𝑐) =

1
|ℛ|

∑
𝑟∈ℛ

𝐹1(𝑔, 𝑐, 𝑟).

However, two other variants exist. These variants try to discard the orien-
tation of the relationship by packing together a relation 𝑟 with its reverse
̆𝑟. This allows us to evaluate separately the ability of the model to find

the correct relation and to find which entity is the subject (𝑒1) and which
is the object (𝑒2). The simplest way to achieve this is to simply ignore the
orientation:

←−−−−→precision(𝑔, 𝑐) = 1
|ℛ†|

∑
{𝑟, ̆𝑟}∈ℛ†

∣{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥), 𝑔(𝑥) ∈ {𝑟, ̆𝑟} }∣
∣{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥) ∈ {𝑟, ̆𝑟} }∣

,

where ℛ† is the set of relations paired by ignoring directionality. The set
ℛ† is well defined, since for the datasets using this metric, ℛ is closed
under the reverse operation ̆ with the notable exception of other. How-
ever, similarly to micro-metrics, other is often ignored altogether. It only
influences the final metrics through the degradation of recall on samples
mispredicted as other and of precision on samples mispredicted as not
other. Following the definitions above, we can similarly define

←−−→
recall and

←→
𝐹1 .

Finally, as a compromise between the directed
−→
𝐹1 and undirected

←→
𝐹1 ,

the half-directed metric was designed:

↼−−−−⇁precision(𝑔, 𝑐) = 1
|ℛ†|

∑
{𝑟, ̆𝑟}∈ℛ†

∣{ 𝑥 ∈ 𝒟 ∣ 𝑔(𝑥) ∈ {𝑟, ̆𝑟} ∧ 𝑐(𝑥) = 𝑔(𝑥) }∣
∣{ 𝑥 ∈ 𝒟 ∣ 𝑐(𝑥) ∈ {𝑟, ̆𝑟} }∣

.

The key difference with the undirected metric is that while the prediction
and gold must still be equal to 𝑟 or ̆𝑟, they furthermore need to be equal
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to each other. Figure 2.2 gives a visual explanation using the confusion
matrix. Note that the distinction between directed and undirected metrics
can also apply to micro-metrics.

𝑟
̆𝑟

𝑟 ̆𝑟⋯ ⋯

⋮

⋮

𝑐

𝑔

Figure 2.2: Supervised metrics defined
on the confusion matrix. Directed met-
rics consider green and blue to be dif-
ferent classes, the

−−−→
recall for the relation

𝑟 is computed by dividing the number
of samples in the dark green cell by the
total number of samples in the green
row. Undirected metrics consider green
and blue to be the same class, the

←−−→
recall

for this class is computed by summing
the four cells in the center including
the two hatched ones and dividing by
the sum of the two rows. Half-directed
metrics also consider {𝑟, ̆𝑟} to form
a single class but the

↼−−⇁
recall is com-

puted by summing the two dark cells in
the center—ignoring the two hatched
ones—and dividing by the sum of the
two rows.

In conclusion, the evaluation of supervised approaches varies along
three axes:

• Whether other is considered a normal relation or is only taken into
account through degraded precision and recall on the other classes.

• Whether the directionality of relations is taken into account.

• Whether class imbalance is corrected through macro-aggregation.

We now describe supervised relation extraction models, starting in this
section with sentential approaches.

2.3.2 Regular Expressions: dipre
Dual Iterative Pattern Relation Expansion (dipre, Brin 1999) follows

Brin, “Extracting Patterns and Re-
lations from the World Wide Web”
webdb 1999

the bootstrap approaches (Section 2.2.1) and thus assumes ℋpullback.
Compared to Hearst (1992), dipre proposes a simple automation for the
ℛℰ × 𝒟 → ℛ𝒮 step—the extraction of new patterns—and applies it to
the extraction of the “author of book” relation. To facilitate this automa-
tion and in contrast to Hearst (1992), it limits itself to two entities per
patterns. dipre introduces the split-in-three-affixes technique illustrated
by Figure 2.3. The entities split the text into three parts: prefix before

<li><b> title </b> by author (

prefix infix suffix

𝑒1 𝑒2

Figure 2.3: dipre split-in-three-affixes
method. The algorithm ran on html
code, <li> marks a list item, while
<b></b> surrounds bold text.

the first entity, infix between the two entities and suffix after the second
entity. This could be considered five parts with the two entities’ surface
forms since they are not part of any of the three affixes. This split reap-
peared in other works since, with the simplest methods assuming that the
infix alone conveys the relation. Even in the case of dipre, all three affixes
are considered, but the infix needed to match exactly, while the prefix and
suffix could be shortened in order to make a pattern more general. All
patterns are specific to an url prefix, which made the algorithm pick up
quickly on lists of books, with the algorithm also handling patterns where
the author appeared before the title with a simple boolean marker.

In order to generate new patterns, dipre takes all occurrences with
the same infix and with the title and author in the same order. To avoid
pattern which are too general they use the following approximation of the
specificity of a pattern:

specificity(pattern) = − log(𝑃 (pattern matches))
≈ total length of the affixes.

When this specificity is lower than a given threshold divided by the number
of known books it matched, the pattern was rejected. In the experiment,
the algorithm was run on a starting set of five (author, title) facts which
generated three patterns, one of which is given in Figure 2.3; these patterns
produced in turn 4 047 facts. As per Hearst (1992), the algorithm was then
iterated once again on these new facts. The second iteration introduced
bogus facts, which were removed manually. Finally, the third iteration
produced a total of 15 257 author of book facts. Brin (1999) manually
analyzes twenty books out of these 15 257 and found that only one of them
was not a book but an article, while four of them were obscure enough not
to appear in the list of a major bookseller.

http://ilpubs.stanford.edu:8090/421/1/1999-65.pdf
http://ilpubs.stanford.edu:8090/421/1/1999-65.pdf
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A limitation of the bootstrap approaches assuming ℋpullback is that
this assumption naively entails the following: As a reminder from Section 1.4.1: 𝟎 de-

notes the empty relation linking no en-
tities together. So 𝑟1 ∩ 𝑟2 = 𝟎 should
be understood as “if we take the rela-
tion linking together all the entity pairs
connected at the same time (∩) by 𝑟1
and 𝑟2, we should obtain the relation
liking no entities together (𝟎).”

Assumption ℋ1-adjacency: There is no more than one relation linking any
two entities.
∀𝑟1, 𝑟2 ∈ ℛ∶ 𝑟1 ∩ 𝑟2 = 𝟎

Indeed, if a pair of entities is linked by two relations, this would implies
a sentence containing these two entities also convey the two relations. By
induction it follows that the two relations would actually be the same.

The approach of dipre was subsequently used by other systems such
as Snowball (Agichtein and Gravano 2000), which uses more complex
matching and pattern generation algorithms and formalizes the experi-
mental setup. We now focus on another semi-supervised approach similar
to bootstrap, which was important to the development of relation extrac-
tion methods.

2.3.3 Dependency Trees: dirt
Discovery of Inference Rules from Text (dirt, D. Lin and Pantel 2001) D. Lin and Pantel, “dirt – Discovery of

Inference Rules from Text” kdd 2001also uses the ℋpullback assumption but makes a single iteration of the
bootstrap algorithm from a single example. Furthermore, dirt makes the
pattern building ℛℰ × 𝒟 → ℛ𝒮 more resilient to noise and applies the
algorithm to multiple relations. Another difference is that it factorizes the
definition of ℛ𝒮 using dependency paths instead of regular expressions.
Given a sentence, a dependency parser can create a tree where nodes
are built from words, and the arcs between the nodes correspond to the
grammatical relationship between the words. This is called a dependency
tree and is exemplified by Figure 2.4. After building a dependency tree, John found a solution to the problem.

N

V

Det

N

Det

N

su
bj obj

de
t to

de
t

Figure 2.4: Example of dependency
tree given by D. Lin and Pantel (2001)
generated using the Minipar depen-
dency parser. The nodes correspond to
words in the sentence, as indicated by
the dashed line. Each node is tagged
by the part-of-speech (pos) of the as-
sociated word. The arrows between the
nodes are labeled with the dependency
between the words. The following ab-
breviations are used: N is noun, V is
verb, Det is determiner, subj is sub-
ject, obj is object, and det is the de-
terminer relation.

“While hunting in Africa, I shot an
elephant in my pajamas. How he got
into my pajamas, I don’t know.

— Groucho Marx, Animal Crack-
ers (1930)

The ambiguity of the prepositional
phrase “in my pajamas” would be
removed by a dependency tree. It
can either be linked to the noun
“elephant” or to the verb “shot.”

we can take the path between two nodes in the tree, for example the path
between “John” and “problem” in the tree of Figure 2.4 is:

←N:subj:V←find→V:obj:N→solution→N:to:N→

Note that lemmatization is performed on the nodes. D. Lin and Pantel
(2001) state their assumption as an extension of the distributional hy-
pothesis (see section 1.1):

Distributional Hypothesis on Dependency Paths: If two depen-
dency paths occur in similar contexts, they tend to convey similar mean-
ings.

In the case of dirt, context is defined as the two endpoints of the paths. For
example, the context of the path given above in Figure 2.4 consists of the
words “John” and “problem.” As such, this can be seen as a probabilistic
version of the ℛℰ×𝒟 → ℛ𝒮 step. In order to ensure these paths correspond
to meaningful relations, only paths between nouns are considered. For
example, by counting all entities appearing at the endpoints of the path
above, D. Lin and Pantel (2001) observe that the following path have
similar endpoints:

←N:subj:V←solve→V:obj:N→

Therefore, they can conclude that these two paths correspond to the same
relation. The orientation of a path is not essential. If the subject of “solve”
appears after its object in a sentence, we still want this path to be counted

http://www.patrickpantel.com/download/papers/2001/kdd01-1.pdf
http://www.patrickpantel.com/download/papers/2001/kdd01-1.pdf
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the same as the one above. As introduced in Section 2.1.1.3, this is a com-
mon problem in relation extraction. To solve this in a relatively straight-
forward manner, we simply assume all paths come in the two possible
orientations, so for each sentence, the extracted path and its reverse are
added to the dataset. We use a mutual information-based measure to eval-
uate how similar two set of endpoints are. Since counting all possible pairs
would be too memory intensive—the squared size of the vocabulary |𝑉 |2
is usually in the order of the billion or more—we measure the similarity
of the first and second endpoint separately. To measure the preference of
the dependency path 𝜋 to have the word 𝑤 ∈ 𝑉 appears at the endpoint
ℓ ∈ {←,→}, the following conditional pointwise mutual information is
used: The similarity metric equations in D.

Lin and Pantel (2001) are quite infor-
mal. In particular, they do not state
that ℓ has a special role as a condi-
tional variable in the pmi and erro-
neously designate the same value as
mi(𝜋, 𝑚, ℓ). The equations given here
are our own.

pmi(𝜋, 𝑤 ∣ ℓ) = log
𝑃(𝜋,𝑤 ∣ ℓ)

𝑃 (𝜋 ∣ ℓ)𝑃 (𝑤 ∣ ℓ)

= log
𝑃(𝜋, ℓ, 𝑤)𝑃(ℓ)
𝑃 (𝜋, ℓ)𝑃 (ℓ, 𝑤)

.

This quantity can be computed empirically using a hash table counting
how many time the triplet (𝜋, ℓ, 𝑤) appeared in the dataset. We can then
compute the similarity between two paths given an endpoint ℓ then take
the geometric average for the two possible value of ℓ to obtain an uncon-
ditioned similarity between paths:

sim(𝜋1, 𝜋2, ℓ) =
∑𝑤∈𝐶(𝜋1,ℓ)∩𝐶(𝜋2,ℓ) (pmi(𝜋1, 𝑤 ∣ ℓ) + pmi(𝜋2, 𝑤 ∣ ℓ))
∑𝑤∈𝐶(𝜋1,ℓ) pmi(𝜋1, 𝑤 ∣ ℓ) +∑𝑤∈𝐶(𝜋2,ℓ) pmi(𝜋2, 𝑤 ∣ ℓ)

sim(𝜋1, 𝜋2) = √sim(𝜋1, 𝜋2,←) × sim(𝜋1, 𝜋2,→),

where 𝐶(𝜋, ℓ) designates the context, that is the set of words appearing
at the endpoint ℓ of the path 𝜋.

Using this similarity function, D. Lin and Pantel (2001) can find sets
of paths corresponding to particular relations by looking at frequent paths
above a fixed similarity threshold. They evaluate their method manually
on a question answering dataset. For each question, they extract the corre-
sponding path and then look at the 40 most similar paths in their dataset
and manually tag whether these paths would answer the original question.
The accuracy of dirt ranges from 92.5% for the relation “manufactures”
to 0% for the relation “monetary value of ” for which no similar paths were
found.

2.3.4 Hand-designed Feature Extractors
The first supervised systems for relation extraction were designed for the
template relations (tr) task of the seventh message understanding confer-
ence (muc-7). The best result was obtained by the ie2 system (Aone et al. To put these results into perspective

with latter work, note that Aone et al.
(1998) mention they ran their model a
167 mhz processor with 128 mb of ram.

1998), which relied on manual pattern development, with an 𝐹1 score of
76%. A close second was the 71% 𝐹1 score of the sift system (S. Miller
et al. 1998), which was devoid of hand-written patterns. sift builds an S. Miller et al., “bbn: Description of

the sift System as Used for muc-7”
muc 1998

augmented parse tree of the sentence, where nodes are added to encode
the semantic information conveyed by each constituent. New nodes are
created using an algorithm akin to a probabilistic context-free grammar
using maximum likelihood. The semantic annotations are chosen follow-
ing co-occurrence counts in the training set, using dynamic programming

https://aclanthology.org/M98-1009
https://aclanthology.org/M98-1009
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to search the space of augmented parse trees efficiently. sift also uses
a model to find cross-sentence relations, which represent 10–20% of the
test set. The predictions are made from a set of elemental features, one of
which was whether the candidate fact was seen in a previous sample; this
gives a slight aggregate orientation to sift, even though it is primarily a
sentential approach (Section 2.1). This first systematic evaluation of mod-
els on the same dataset set the stage for the development of the relation
extraction task.

Subsequently, several methods built upon carefully designed features.
This is for example the case of Kambhatla (2004) who use the maximum Kambhatla, “Combining Lexical, Syn-

tactic, and Semantic Features with
Maximum Entropy Models for Infor-
mation Extraction” acl 2004

entropy principle on the following set of features:

John ate too many tomatoes.

NNP VBD

RB JJ

NNSADJP

NP2

VPNP1

S

Figure 2.5: Example of syntactic parse
tree generated by the pcfg parser
(Klein and Manning 2003). The follow-
ing abbreviations are used: S (simple
declarative clause), NP (noun phrase),
VP (verb phrase), ADJP (adjective
phrase), NNS (plural noun), NNP (singu-
lar proper noun), RB (adverb), JJ (ad-
jective). In contrast to a dependency
tree (Figure 2.4), the words corre-
spond to the tree’s leaves, while inter-
nal nodes correspond to constituents
clauses.

• entities and infix words with positional markers,

• entity types by applying ner to the corpus,

• entity levels, that is whether the entity is a composite noun or a pro-
noun which was linked to an entity through coreference resolution,

• the number of other words and entities appearing between 𝑒1 and
𝑒2,

• whether 𝑒1 and 𝑒2 are in the same noun phrase, verb phrase or
prepositional phrase,

• the dependency neighborhood, that is the neighboring nodes in the
dependency tree (see Figure 2.4),

• the syntactic path, that is the path between the entities in the syn-
tactic parse tree (see Figure 2.5).

Let’s call (𝑓𝑖(𝑥, 𝑟))𝑖∈{1,…,𝑛} the indicator functions which equal 1 iff 𝑥 has
feature 𝑖 and convey 𝑟. The maximum entropy principle states that a
classifier should match empirical data on the observed space but should
have maximal entropy outside it. Calling 𝑄∗ the optimal probability model
in this sense, we have:

𝑄∗ = argmax
𝑄∈𝒬

H(𝑄)

= argmax
𝑄∈𝒬

∑
(𝑥,𝑟)∈𝒟

−𝑄(𝑥, 𝑟) log𝑄(𝑟 ∣ 𝑥)

= argmax
𝑄∈𝒬

∑
(𝑥,𝑟)∈𝒟

− ̂𝑃 (𝑥)𝑄(𝑟 ∣ 𝑥) log𝑄(𝑟 ∣ 𝑥), As a reminder, �̂� denotes the empirical
distribution.

where 𝒬 is the set of probability mass functions matching observations:

𝒬 = { p.m.f. 𝑄 ∣ 𝔼
(𝑥,𝑟)∼𝑄

[𝑓𝑖(𝑥, 𝑟)] = 𝔼
(𝑥,𝑟)∼�̂�

[𝑓𝑖(𝑥, 𝑟)] } .

Given this setup, the solution is part of a very restricted class of functions:

𝑄∗(𝑟 ∣ 𝑥; 𝝀) ∝ exp
𝑛

∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥, 𝑟).

The parameters 𝝀 are estimated using an algorithm called generalized
iterative scaling (gis, Darroch and Ratcliff 1972). Using this approach,
Kambhatla (2004) evaluate their model on a dataset succeeding muc-7
called ace (to be precise, ace 2003, see Section C.1 for details). They
achieve an 𝐹1 of 52.8% on 24 ace relation subtypes.

https://aclanthology.org/P04-3022
https://aclanthology.org/P04-3022
https://aclanthology.org/P04-3022
https://aclanthology.org/P04-3022
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2.3.5 Kernel Approaches
Designing a set of low-dimensional features is a tedious task: a large set of
features can be computationally prohibitive, while a small set of features
is necessarily limiting since they can never completely capture the essence
of all samples which live in higher dimension. The kernel approaches seek
to avoid this limitation by comparing samples pairwise without passing
through an explicit intermediary representation. To do so, a kernel func-
tion 𝑘 is defined over pair of samples:

𝑘∶ (𝒮 × ℰ2) × (𝒮 × ℰ2) → ℝ≥0,

where 𝑘 acts as a similarity measure and is required to be symmetric and
positive-semidefinite. It can be shown that there is an equivalence between
kernel functions and features space; for each kernel function 𝑘 there is an
implicit set of features 𝒇 such that 𝑘(𝑥1, 𝑥2) = 𝒇(𝑥1) ⋅ 𝒇(𝑥2). However,
some kernel function 𝑘 might be computed without having to enumerate
all features 𝒇.

This property is used for relation extraction by Zelenko et al. (2003) Zelenko et al., “Kernel Methods for Re-
lation Extraction” jmlr 2003who define a similarity function 𝑘 between shallow parse trees.39 The tree
39 A shallow parse tree is similar to
a syntactic parse tree (Figure 2.5) on
a partition of the words of a sentence
(S. P. Abney 1991).

kernel is defined through a similarity on nodes with a recursive call on
children nodes. The equivalent feature space would need to contain all
possible sub-trees which are impractical to enumerate. Zelenko et al. (2003)
train a support vector machine (svm, Cortes and Vapnik 1995) and a voted
perceptron (Freund and Schapire 1999) on a dataset they hand-labeled.
Culotta and Sorensen (2004) used a similar approach with a tree kernel, Culotta and Sorensen, “Dependency

Tree Kernels for Relation Extraction”
acl 2004

except that they used dependency trees (Figure 2.4) instead of syntactic
parse trees. They trained svms on the ace 2004 dataset (Section C.1),
with their best setup reaching an 𝐹1 of 63.2%. Finally, Zhou et al. (2005) Zhou et al., “Exploring Various Knowl-

edge in Relation Extraction” acl 2005also trained an svm but directly used the dot product inside the feature
space as a kernel.40 Extracting a wide variety of features, they were able 40 In the same way that a kernel al-

ways corresponds to the dot product
in a feature space, the reverse can be
shown to be true too, since a Gram ma-
trix is always semidefinite positive.

to reach an 𝐹1 score of 74.7% on the ace 2004 dataset.

2.3.6 Piecewise Convolutional Neural Network
In the 2010s, machine learning models moved away from hand-designed
features towards automatic feature extractors (Section 1.1). In relation ex-
traction, this move was initiated by Socher et al. (2012) using an rnn-like
model (Section 1.3.2), but it really started to gain traction with piecewise
convolutional neural networks (pcnn, Zeng et al. 2015). pcnns perform Zeng et al., “Distant Supervision

for Relation Extraction via Piece-
wise Convolutional Neural Networks”
emnlp 2015

supervised relation extraction using deep learning. In contrast to previ-
ous models, they learn a cnn feature extractor (Section 1.3.1) on top of
word2vec embeddings (Section 1.2.1) instead of using hand-engineered fea-
tures. Furthermore, pcnn uses the split-in-three-affixes method of dipre
(Figure 2.3). They feed each affix to a cnn followed by a max-pooling to
obtain a fixed-length representation of the sentence, which depends on the
position of the embeddings. This representation is then used to predict the
relation using a linear and softmax layer. While the global position invari-
ance of cnn is interesting for language modeling, phrases closer to entities
might be of more importance for relation extraction, thus pcnn also uses
temporal encoding (Section 1.3.3.2). Figure 2.6 showcases a pcnn model.

The setup described above can be used for sentential relation extrac-
tion. However, Zeng et al. (2015) and subsequent works place themselves

https://www.jmlr.org/papers/volume3/zelenko03a/zelenko03a.pdf
https://www.jmlr.org/papers/volume3/zelenko03a/zelenko03a.pdf
https://aclanthology.org/P04-1054
https://aclanthology.org/P04-1054
https://aclanthology.org/P05-1053
https://aclanthology.org/P05-1053
https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
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Figure 2.6: Architecture of a pcnn
model. The model is only given a sen-
tence that was split into three pieces;
entities are ignored. The embeddings
of the words in each piece are concate-
nated with two positional embeddings.
Each piece is then fed to a convolu-
tional layer, and a linear layer merges
the three representations together. At
the softmax output, we obtain a prob-
ability distribution over possible rela-
tions given the sentence.

in the aggregate setup. Therefore, we will wait until Section 2.4.4 to delve
into the training algorithm and experimental results of pcnns.

2.3.7 Transformer-basedModels
Following the progression of Section 1.3, cnn-based models were soon
replaced by transformer-based models. Soares et al. (2019) introduce the Soares et al., “Matching the Blanks:

Distributional Similarity for Relation
Learning” acl 2019

unsupervised matching the blanks (mtb) model together with an in-depth
study on the use of transformers for relation extraction. We will focus on
the transformer extractor in this section and study the unsupervised model
in Section 2.5.6. Soares et al. (2019) introduces several methods to extract
an entity-aware representation of a sentence using bert (Section 1.3.4).
These different methods can be characterized along two axes:

Entity Span Identification, that is how are the entities marked in the
sentence. This can be none, meaning that the entities are not dif-
ferentiated from the other words in the sentence. It can be through
entity markers, i.e. new tokens are introduced to mark the two en-
tities’ beginning and end, as showcased by Figures 2.12 and 2.7.
Finally, it can be through a special feature of bert: token type em-
beddings; in this case, the embeddings of the entity tokens are added
to another embedding representing the slot—either 𝑒1 or 𝑒2—of the
entity.

Output Construction, that is how a fixed-size representation is ob-
tained from the sequence of token embeddings. A first approach is to
simply use the cls token embedding, i.e. the sequence’s first token,
which should encompass the whole sentence semantic (Section 1.3.4).
A second approach is to use entity max-pooling: each entity is rep-
resented by the component-wise maximum along its tokens embed-
dings, the sentence is represented by the concatenation of its entities
representations. A variant of this, using mean pooling combined with
the cls method, is used by epgnn (Figure 2.12). These represen-
tations should better capture the semantic surrounding the entities,
in contrast to the cls token, which captures the whole sentence’s
semantic. Finally, a last option is to use the embeddings of the en-
tity start markers; this is the option illustrated by Figure 2.7 and
has the advantage to lessen the dependence of the representation on

https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
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the entity surface form (Section 2.1.2 describes why this could be
desirable).

cls <e1> Jeremy Bentham </e1> was born in <e2> London </e2> . eos

bert

Figure 2.7: mtb entity markers–entity
start sentence representation. “Ben-
tham” was split into two subword to-
kens, “Ben-” and “-tham” by the bpe
algorithm described in Section 1.2.3.
The contextualized embeddings of
most words are ignored. The final rep-
resentation is only built using the rep-
resentation of <e1> and <e2>. How-
ever, note that these representations
are built from all the words in the sen-
tence using an attention mechanism
(Section 1.3.3). In the original work
of Soares et al. (2019), the represen-
tation extracted by bert is either fed
through layer normalization (Ba et al.
2016) or to a linear layer depending on
the dataset.

The best results obtained by mtb were with the entity markers–entity
start method. This is the method we focus on from now on. We refer to
this sentence representation model by the function bertcoder ∶ 𝒮 → ℝ𝑑

illustrated Figure 2.7. Training is performed using a softmax layer of size
|ℛ| with a cross-entropy loss. Using a standard bert-large pre-trained
on a mlm task, mtb obtains a macro-↼⇁𝐹1 of 89.2% on the SemEval 2010
Task 8 (Section C.6).

2.4 Supervised Aggregate ExtractionModels
All the approaches introduced thus far are sentential. They map each sam-
ple to a relation individually, without modeling the interactions between
samples. In contrast, this section focuses on aggregate approaches (Equa-
tion 2.2). Aggregate approaches explicitly model the connections between
samples. The most common aggregate method is to ensure the consistency
of relations predicted for a given entity pair 𝒆 ∈ ℰ2 by processing together
all sentences 𝑠 ∈ 𝒮 mentioning 𝒆. To this end, we define 𝒟𝒆 to be the
dataset 𝒟 grouped by entity pairs. Thus, instead of containing a sample
𝑥 = (𝑠, 𝒆), the dataset 𝒟𝒆 contains bag of mentions 𝒙 = {(𝑠, 𝒆), (𝑠′, 𝒆),… }
of the same entity pair 𝒆. Most aggregate methods are built upon senten-
tial approaches and provide a sentential assignment. Therefore, more often
than not, each sample is still mapped to a relation. Therefore, the evalua-
tions of aggregate methods follow the evaluations of sentential approaches
introduced in Section 2.3.1.

2.4.1 Label Propagation
To deal with the shortage of manually labeled data, one approach is to use
labels weakly correlated with the samples as in distant supervision (Sec-
tion 2.2.2). Another approach is to label a small subset of the dataset but
leave most samples unlabeled. This is the semi-supervised approach. The
bootstrapped models (Section 2.2.1) can also be seen as semi-supervised
approaches: a small number of labeled samples are given to the model,
which then crawls the web to obtain new unsupervised samples. The eval-
uation of semi-supervised models follows the one of supervised models
described in Section 2.3.1. The difference between the two lies in the fact
that unsupervised samples can be used to gain a better estimate of the
input distribution in the semi-supervised settings, while fully-supervised
models cannot make use of unsupervised samples.
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Apart from bootstrapped models, one of the first semi-supervised re-
lation extraction systems was proposed by Chen et al. (2006). They build Chen et al., “Relation Extraction Us-

ing Label Propagation Based Semi-
Supervised Learning” acl 2006

their model on top of hand-engineered features (Section 2.3.4) compared
using a similarity function. This is somewhat similar to kernel approaches
(section 2.3.5), except that this function does not need to be positive
semidefinite. Given all samples in feature space, the labels from the super-
vised samples are propagated to the neighboring unlabeled samples using
the label propagation algorithm (X. Zhu and Ghahramani 2002) listed as
Algorithm 2.2. This propagation takes the form of a convex combination
of other samples’ labels weighted by the similarity function. Let’s call sim
this unlabeled sample similarity function:

sim ∶ (𝒮 × ℰ2) × (𝒮 × ℰ2) → ℝ.

The label propagation algorithm builds a pairwise similarity matrix be-
tween labeled and unlabeled samples which have been column normalized
then row normalized:

algorithm Label Propagation
Inputs: 𝒟ℛ labeled dataset

𝒟 unlabeled dataset
Output: �̂� relation predictions

▷ Initialization ◁
𝑻 ← computed using Equation 2.4

from 𝒟ℛ and 𝒟
𝒀 ← random stochastic matrix
for all (𝑠𝑖, 𝒆𝑖, 𝑟𝑖) ∈ 𝒟ℛ do

𝑦𝑖𝑗 ← 𝛿𝑗,𝑟𝑖
▷ Training ◁
loop

𝒀 ← 𝑻 𝒀
for all (𝑠𝑖, 𝒆𝑖, 𝑟𝑖) ∈ 𝒟ℛ do

𝑦𝑖𝑗 ← 𝛿𝑗,𝑟𝑖

̂𝑟𝑖 ← argmax𝑗 𝑦𝑖𝑗
output �̂�

Algorithm 2.2: The label propagation
algorithm. The notation 𝛿𝑎,𝑏 is a Kro-
necker delta, equals to 1 if 𝑎 = 𝑏 and
to 0 otherwise. The two loops assigning
to 𝑦𝑖𝑗 are simply enforcing that the re-
lation assigned to the labeled samples
do not deviate from their gold value.

𝑡𝑖𝑗 ∝
exp ( sim(𝑥𝑖, 𝑥𝑗))

∑
𝑥𝑘∈𝒟∪𝒟ℛ

exp ( sim(𝑥𝑘, 𝑥𝑗))
for 𝑖, 𝑗 ∈ {1,… , |𝒟| + |𝒟ℛ|} (2.4)

The relation assigned to each unlabeled sample is then recomputed by
aggregating the labels—whether these labels come from 𝒟ℛ or were com-
puted at a previous iteration—of all other samples weighted by 𝑻. Note
that labels assigned to samples coming from 𝒟ℛ are not altered. This op-
eration is repeated until the label assignment stabilizes. This label propa-
gation algorithm has been shown to converge to a unique solution (X. Zhu
and Ghahramani 2002).

Chen et al. (2006) tried two similarity functions: the cosine and the
Jensen–Shannon of the feature vectors. They evaluated their approach on
the ace 2003 dataset (Section C.1) using different fractions of the labels
to show that while their model was roughly at the same performance level
than others when using the whole dataset, it decisively outperformed other
methods when using a small number of labels.

2.4.2 Multi-instance Multi-label
Following the popularization of distant supervision by Mintz et al. (2009),
training datasets gained in volume but lost in quality (see Section 2.2.2). In
order to create models more resilient to the large number of false-positive
in distantly-supervised datasets, multi-instance approaches (Dietterich et
al. 1997) started to get traction.

In the article of Mintz et al. (2009), all mentions of the same entity pair
are viewed as a single sample to make a prediction. Their model is a simple
logistic classifier on top of hand-engineered features, which could only
predict a single relation label per entity pair. However, when aggregating
the features of all mentions and supervising with a single relation, Mintz
et al. (2009) backpropagate to all features, i.e. the parameters used by all
mentions are modified. This assumes that all mentions should convey the
relation. To avoid this assumption, the more sophisticated multi-instance
assumption is used:
Assumption ℋmulti-instance: All facts (𝒆, 𝑟) ∈ 𝒟kb are conveyed by at
least one sentence of the unlabeled dataset 𝒟.
∀(𝑒1, 𝑒2, 𝑟) ∈ 𝒟kb ∶ ∃(𝑠, 𝑒1, 𝑒2) ∈ 𝒟 ∶ (𝑠, 𝑒1, 𝑒2) conveys 𝑒1 𝑟 𝑒2

https://aclanthology.org/P06-1017
https://aclanthology.org/P06-1017
https://aclanthology.org/P06-1017
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MultiR (Hoffmann et al. 2011) follows such a multi-instance setup but Hoffmann et al., “Knowledge-Based
Weak Supervision for Information Ex-
traction of Overlapping Relations” acl
2011

also models multiple relations and thus does not assume ℋ1-adjacency, un-
like all the models introduced thus far. Figure 2.8 illustrates this setup,
which is dubbed miml (multi-instance multi-label) following the subse-
quent work of Surdeanu et al. (2012).

entity
pair …

𝑟1

𝑟𝑚

…

𝑖2

𝑖1

𝑖𝑛
linked byappears in

Figure 2.8: Multi-instance (𝑛 > 1)
multi-label (𝑚 > 1) setup. Each entity
pair appears in several instances and
the two entities are linked by several
relations.

MultiR uses a latent variable 𝑧 to capture the sentential extraction.
That is, for each sentence 𝑥𝑖 ∈ 𝒟ℛ, the latent variable z𝑖 ∈ ℛ captures
the relation conveyed by 𝑥𝑖. Furthermore, for a given entity pair 𝒆 ∈ ℰ2,
for all 𝑟 ∈ ℛ, a binary classifier 𝑦𝑟 is used to predict whether this pair
is linked by 𝑟. In this fashion, multiple relations can be predicted for the
same entity pair. The model can be summarized by the plate diagram of
Figure 2.9. Let’s define 𝒟𝒆

ℛ the dataset 𝒟ℛ where samples are grouped

zx y

ℛ𝒮 ∕ ℰ2

ℰ2

Figure 2.9: MultiR plate diagram.
Where denotes factor nodes.

by entity pairs. Since multiple relations can link the same entity pair, we
will use 𝒚 ∈ {0, 1}ℛ to refer to the binary vector indexing the conveyed
relations. Formally, MultiR defines the probability of the sentential (𝒛)
and aggregate (𝒚) assignments for a mention bag (𝒙) as follow:

𝑃(𝒚, 𝒛 ∣ 𝒙; 𝜽) ∝ ∏
𝑟∈ℛ

𝝓join(𝑦𝑟, 𝒛) ∏
𝑥𝑖∈𝒙

𝝓extract(𝑧𝑖, 𝑥𝑖; 𝜽) (2.5)

where 𝝓join simply aggregate the predictions for all mentions:

𝝓join(𝑦𝑟, 𝒛) = {1 if 𝑦𝑟 = 1 ∧ ∃𝑖 ∶ 𝑧𝑖 = 𝑟
0 otherwise

and 𝝓extract is a weighted sum of several hand-designed features:

𝝓extract(𝑧𝑖, 𝑥𝑖; 𝜽) = exp( ∑
feature 𝑗

𝜃𝑗𝜙𝑗(𝑧𝑖, 𝑥𝑖))

We now describe the training algorithm used by MultiR, which is
listed as Algorithm 2.3. Following the multi-instance setup, MultiR as-
sumes that every fact (𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb is conveyed by at least one mention
(𝑠, 𝑒1, 𝑒2) ∈ 𝒟. This can be seen in the first product of Equation 2.5: if
a single gold relation is not predicted for any sentence, the whole prob-
ability mass function drops to 0. This means that during inference, each
relation 𝑟 conveyed in the knowledge base must be covered by at least one
sentential extraction 𝑧. Given all sentences 𝒙𝑖 ⊆ 𝒟 containing an entity In particular, note that if an entity pair

is linked by more relations than it has
mentions in the text, the algorithm col-
lapses since each mention conveys a
single relation.

pair (𝑒1, 𝑒2), when the model does not predict the actual set of relations
𝒚𝑖 = { 𝑟 ∣ (𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb }, the parameters 𝜽 must be tuned such that
every relation 𝑟 ∈ 𝒚𝑖 is conveyed by at least one sentence, as expressed by
the line:

𝒛∗ ← argmax
𝒛

𝑃(𝒛 ∣ 𝒙𝑖, 𝒚𝑖; 𝜽).

This can be reframed as a weighted edge-cover problem, where the edge
weights are given by 𝝓extract(𝑧𝑖, 𝑥𝑖; 𝜽). The MultiR training algorithm can
be seen as maximizing the likelihood 𝑃(𝒚 ∣ 𝒙; 𝜽) where a Viterbi approxi-
mation was used—the expectations being replaced with maxima.

The multi-instance multi-label (miml) phrase was introduced by Sur-
deanu et al. (2012). Their approach is similar to that of MultiR except that Surdeanu et al., “Multi-instance Multi-

label Learning for Relation Extrac-
tion” emnlp 2012

they train a classifier for 𝝓join instead of using a deterministic process.
Their training procedure also differs. They train in the Bayesian frame-
work using an expectation–maximization algorithm. In general, miml ap-
proaches are challenging to evaluate systematically since they suffer from

https://aclanthology.org/P11-1055
https://aclanthology.org/P11-1055
https://aclanthology.org/P11-1055
https://aclanthology.org/D12-1042
https://aclanthology.org/D12-1042
https://aclanthology.org/D12-1042


2 Relation Extraction 66

algorithm MultiR
Input: 𝒟𝒆

ℛ a supervised multi-instance dataset
Output: 𝜽 model parameters

𝜽 ← 𝟎
loop

for all (𝒙𝑖, 𝒚𝑖) ∈ 𝒟𝒆
ℛ do

(𝒚′, 𝒛′) ← argmax
𝒚,𝒛

𝑃(𝒚, 𝒛 ∣ 𝒙𝑖; 𝜽)

if 𝒚′ ≠ 𝒚𝑖 then
𝒛∗ ← argmax

𝒛
𝑃(𝒛 ∣ 𝒙𝑖, 𝒚𝑖; 𝜽)

𝜽 ← 𝜽 + 𝝓(𝒙𝑖, 𝒛∗) − 𝝓(𝒙𝑖, 𝒛′)
output 𝜽

Algorithm 2.3: The MultiR training
algorithm. For each bag of mentions
𝒙𝑖, the more likely sentential and ag-
gregate predictions (𝒚′, 𝒛′) are made.
If the predicted relations are different
from the true relations 𝒚𝑖 linking the
two entities, the parameters 𝜽 are ad-
justed such that 𝒛 cover all relations in
𝒚𝑖.

low precision due to incomplete knowledge bases. In particular, they were
not compared with traditional supervised approaches. For reference, Sur-
deanu et al. (2012) compare the three methods mentioned in this section
on the same datasets and observe that at the threshold at which recall
goes over 30%, the precision falls under 30%.

2.4.3 Universal Schemas
Another important weakly-supervised model is the universal schema ap-
proach designed by Riedel et al. (2013). In their setting, existing relations Riedel et al., “Relation Extraction

with Matrix Factorization and Univer-
sal Schemas” nacl 2013

and surface forms linking two entities are considered to be of the same
nature. Slightly departing from their terminology, we refer to the union
of relations (ℛ) and surface forms (𝒮) by the term “items” (ℐ = ℛ ∪ 𝒮)
for their similarity with the collaborative filtering concept. Riedel et al.
(2013) consider that entity pairs are linked by items such that the dataset
available could be refered to as 𝒟ℐ ⊆ ℰ2 × ℐ. This can be obtained by
taking the union of an unlabeled dataset 𝒟 and a knowledge base 𝒟kb.
This dataset 𝒟ℐ can be seen as a matrix with entity pairs corresponding
to rows and items corresponding to columns. With this in mind, relation
extraction resembles collaborative filtering. Figure 2.10 gives an example
of this matrix that we will call 𝑴 ∈ ℝℰ2×ℐ.

Ferguson𝑒1
Harvard𝑒2

Oman𝑒1
Oxford𝑒2

Firth𝑒1
Oxford𝑒2
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1 1 1
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1

1

0.95 0.97 0.95
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Figure 2.10: Universal schema matrix.
Observed entity–item pairs are shown
in green, blue cells are unobserved
values, while orange cells are unob-
served values for which a prediction
was made. The observed values on the
left (surface forms) come from an un-
supervised dataset 𝒟, while the ob-
served values on the right (relations)
come from a knowledge base 𝒟kb.
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Riedel et al. (2013) purpose to model this matrix using a combination
of three models. One of them being a low-rank matrix factorization:

𝑚F
𝑒𝑖 =

𝑑

∑
𝑗=0

𝑢𝑒𝑗𝑣𝑖𝑗

where 𝑑 is a hyperparameter, and 𝑼 ∈ ℝℰ2×𝑑 and 𝑽 ∈ ℝℐ×𝑑 are model
parameters. The two other models are an inter-item neighborhood model
and selectional preferences (described in Section 1.4.2.1), which we do not
detail here. Training such a model is difficult since we do not have access
to negative facts: not observing a sample (𝒆, 𝑖) ∉ 𝒟ℐ does not necessarily
imply that this sample is false. To cope with this issue, Riedel et al. (2013)
propose to use the Bayesian personalized ranking model (bpr, Rendle et
al. 2009). Instead of enforcing each element 𝑚𝑒𝑖 to be equal to 1 or 0, Rendle et al., “bpr: Bayesian Personal-

ized Ranking from Implicit Feedback”
uai 2009

bpr relies upon a ranking objective pushing element observed to be true
to be ranked higher than unobserved elements. This is done through a
contrastive objective between observed positive samples and unobserved
negative samples from a uniform distribution:

𝐽us(𝜽) = ∑
(𝒆+,𝑖)∈𝒟ℐ

∑
(𝒆−,𝑖)∈ℰ2×ℐ

(𝒆−,𝑖)∉𝒟ℐ

log𝜎(𝑚𝑒+𝑖 −𝑚𝑒−𝑖)

This objective can be directly maximized using stochastic gradient ascent.
Riedel et al. (2013) experiment on a nyt+fb dataset, this means the un-
supervised dataset 𝒟 comes from the New York Times (nyt, Section C.5)
and the knowledge base 𝒟kb is Freebase (fb, Section C.3).

2.4.4 Aggregate pcnn Extraction
pcnn is a sentence-level feature extractor introduced in Section 2.3.6. Zeng
et al. (2015) introduce the pcnn feature extractor together with a multi- Zeng et al., “Distant Supervision

for Relation Extraction via Piece-
wise Convolutional Neural Networks”
emnlp 2015

instance learning algorithm. Given a bag of mentions 𝒙 ∈ 𝒟𝒆, for each
mention 𝑥𝑖 ∈ 𝒙, they model 𝑃(r ∣ 𝑥𝑖; 𝜽). However, the optimization is
done over each bag of mentions separately:

ℒpcnn(𝜽) = − ∑
(𝒙,𝑟)∈𝒟𝒆

ℛ

log𝑃(𝑟 ∣ 𝑥∗; 𝜽) (2.6)

𝑥∗ = argmax
𝑥𝑖∈𝒙

𝑃(𝑟 ∣ 𝑥𝑖; 𝜽) (2.7)

In other words, for a set of mention 𝒙 of an entity pair, the network back-
propagates only on the sample that predicts a relation with the highest
certainty. Thus pcnn is a multi-instance single-relation model, it assumes
ℋmulti-instance but also ℋ1-adjacency.

Zeng et al. (2015) continue to use the experimental setup of Surdeanu
et al. (2012), i.e. using a distantly supervised dataset, but complement it
with a manual evaluation to have a better estimate of the precision.

Y. Lin et al. (2016) improve the pcnn model with an attention mecha- Y. Lin et al., “Neural Relation Extrac-
tion with Selective Attention over In-
stances” acl 2016

nism over mentions to replace the argmax of Equation 2.7. The attention
mechanism’s memory is built from the output of the pcnn on each men-
tion without applying a softmax; the pcnn is simply used to produce a
representation for each mention. Equations 2.6 and 2.7 are then replaced

https://dl.acm.org/doi/pdf/10.5555/1795114.1795167
https://dl.acm.org/doi/pdf/10.5555/1795114.1795167
https://aclanthology.org/D15-1203
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https://aclanthology.org/P16-1200
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by:

ℒLin(𝜽) = − ∑
(𝒙,𝑟)∈𝒟𝒆

ℛ

log𝑃(𝑟 ∣ 𝒙; 𝜽)

𝑃 (𝑟 ∣ 𝒙; 𝜽) ∝ exp(𝑾𝒔(𝒙, 𝑟) + 𝒃)

𝒔(𝒙, 𝑟) = ∑
𝑥𝑖∈𝒙

𝛼𝑖 pcnn(𝑥𝑖)

where the 𝛼𝑖 are attention weights computed from a bilinear product be-
tween the query 𝑟 and the memory pcnn(𝒙), similarly to the setup of
Section 1.3.3. Y. Lin et al. (2016) show that this modification improves
the results of pcnn, this can be seen as a relaxation of ℋmulti-instance: the
standard pcnn approach assumes that each fact in 𝒟kb is conveyed by
a single sentence through its argmax; in contrast, the attention approach
simply assumes that all facts are conveyed in 𝒟, at least by one sentence
but possibly by several ones.

2.4.5 Entity Pair Graph
The multi-instance approach shares information at the entity pair level.
However, information could also be shared between different entity pairs.
This is the idea put forth by entity pair graph neural network (epgnn,
Zhao et al. 2019). The basic sharing unit becomes the entity: when two Zhao et al., “Improving Relation Clas-

sification by Entity Pair Graph” pmlr
2019

mentions (𝑠, 𝑒1, 𝑒2), (𝑠′, 𝑒′
1, 𝑒

′
2) ∈ 𝒟 share at least one entity ({𝑒1, 𝑒2} ∩

{𝑒′
1, 𝑒

′
2} ≠ ∅), their features interact with each other in order to make a

prediction. The sharing of information is made following an entity pair
graph that links together bags of mentions with a common entity as illus-
trated in Figure 2.11.

The trustees invested money𝑒1
directly into funds𝑒2

made
available by Newton Investment.

Huge money𝑒1
is given to

companies𝑒2
for boosting

economy.
Japan injected funds𝑒1

into
struggling companies𝑒2

.money

companies

funds

Figure 2.11: Entity pair graph. Each
node corresponds to a bag of men-
tions, each edge of the graph corre-
sponds to an entity in common be-
tween the two bags, the edges are la-
beled with the shared entity. For il-
lustration purpose, we show a single
sample per bag. This example is from
the SemEval 2010 Task 8 dataset (de-
scribed in Section C.6). All sentences
convey the entity-destination relation.

To obtain a distributed representation for a sentence, epgnn uses bert
(Section 1.3.4). More precisely, it combines the embedding of the cls to-
ken41 with the embeddings corresponding to the two entities through a 41 As a reminder, the cls token is the

marker for the beginning of the sen-
tence, its embedding purposes to rep-
resent the whole sentence.

mean pooling. The sentence feature extraction architecture is illustrated
by Figure 2.12. This is one of several methods to obtain an entity-aware
fixed-size representation of a tagged sentence; other approaches are devel-
oped in Section 2.3.7.

Given a vector representation for each sentence in the dataset, we can
label the vertices of the entity pair graph. A spectral graph convolutional
network (gcn, Section 4.3.2) is then used to aggregate the information
of its neighboring samples into each vertex. Thus, epgnn produces two
representations for a sample: one sentential and one topological. From

https://proceedings.mlr.press/v101/zhao19a.html
https://proceedings.mlr.press/v101/zhao19a.html
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cls <e1> Jeremy Bentham </e1> was born in <e2> London </e2> . eos

bert

Mean pooling Mean pooling
Figure 2.12: epgnn sentence represen-
tation. “Bentham” was split into two
subword tokens, “Ben-” and “-tham”
by the bpe algorithm described in Sec-
tion 1.2.3. The contextualized embed-
dings of most words are ignored. The
final representation is only built using
the entities span and the cls token.
Not appearing on the figure are lin-
ear layers used to post-process the out-
put of the mean poolings and the final
representation as well as a ReLU non-
linearity. Compare to Figure 2.7.

these two representations, a prediction is made using a linear and softmax
layer. Since a single relation is produced for each sample, epgnn is trained
using the usual classification cross-entropy loss. More details on graph-
based approaches are given in Chapter 4.

Zhao et al. (2019) evaluate epgnn on two datasets, SemEval 2010
Task 8 (Section C.6) and ace 2005 (Section C.1). Reaching a half-directed
macro-↼⇁𝐹1 of 90.2% on the first one, and a micro-𝐹1 of 77.1% on the second.

2.5 Unsupervised ExtractionModels

“ If intelligence was a cake, unsu-
pervised learning would be the cake, su-
pervised learning would be the icing on
the cake, and reinforcement learning
would be the cherry on the cake.

— Yann LeCun, Inaugural Lec-
ture at Collège de France
(2016)

In the unsupervised setting, no samples are labeled with a relation, i.e. all
samples are triplets (sentence, head entity, tail entity) from 𝒟 ⊆ 𝒮 ×
ℰ2. Furthermore, no information about the relation set ℛ is available.
This is problematic since whether a specific semantic link is worthy of
appearing in ℛ or not is not well defined. Having so little information
about what constitutes a relation makes the problem intractable if we do
not impose some restrictions upon ℛ. All unsupervised models presented
in this section are not universal and make some kind of assumption on
the structure of the data or on its underlying knowledge base. However,
developing unsupervised relation extraction models is still interesting for
three reasons: they (1) do not necessitate labeled data except for validating
the models; (2) can uncover new relation types; and (3) can be trained from
large unlabeled datasets and then fine-tuned for specific relations.

For all models, we list the important modeling hypothesis such as
ℋ1-adjacency and ℋpullback introduced previously. Appendix B contains
a list of assumptions with some counterexamples and references to the
sections where they were introduced. We strongly encourage the reader to
refer to it, especially when the implications of a modeling hypothesis is
not immediately clear.

2.5.1 Evaluation
The output of unsupervised models vary widely. The main modus operandi
can be categorized into two categories:

Clustering A first approach is to cluster the samples such that all sam-
ples in the same cluster convey the same relation and samples in
different clusters convey different relations.
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Similarity Space A second approach is to associate each sample with an
element of a vector space equipped with a similarity function. If two
samples are similar in this vector space, they convey similar relations.
This can be seen as a soft version of the clustering approach.

This distinction has an impact on how we evaluate the models. In the
first case, standard clustering metrics are used. We introduce B3 (Bagga
and Baldwin 1998), V-measure (Rosenberg and Hirschberg 2007) and ari
(Hubert and Arabie 1985) in Section 2.5.1.1. They are the most prevalent
metrics in cluster evaluation, B3 in particular is widely used in unsuper-
vised relation extraction. In the second case, a few-shot evaluation can be
used (Han et al. 2018). We introduce this approach in Section 2.5.1.2.

A difficulty of evaluating unlabeled clusters is that we do not know
which cluster should be compared to which relation. A possible solution
to this problem is to use a small number of labeled samples, which can be
used to constrain the output of a model to fall into a specific relation set ℛ.
This setup is actually similar to semi-supervised approaches such as label
propagation (Section 2.4.1), except that the model must be trained in an
unsupervised fashion before being fine-tuned on the supervised dataset.
Similar to the label propagation model evaluation, unsupervised models
evaluated by fine-tuning on a supervised dataset usually report perfor-
mance varying the number of train labels. These performances are mea-
sured using the standard supervised metrics introduced in Section 2.3.1.
Evaluating performances as a pre-training method can be used for all un-
supervised models, in particular similarity-space-based approaches.

2.5.1.1 Clustering Metrics
In this section, we describe three metrics used to evaluate clustering ap-
proaches. The first metric, B3 was first introduced to unsupervised relation
extraction by rel-lda (Yao et al. 2011, Section 2.5.4), while the other two
were proposed as complements by Simon et al. (2019) presented in Chap-
ter 3.

“The cake is a lie.
— Valve, “Portal” (2007)

To clearly describe these different clustering metrics, we propose a
common probabilistic formulation—in practice, these probabilities are es-
timated on the validation and test sets—and use the following notations.
Let X and Y be random variables corresponding to samples in the dataset.
Following Section 2.3.1, we denote by 𝑐(X) the predicted cluster of X and
𝑔(X) its conveyed gold relation.42 42 This implies that a labeled dataset

is sadly necessary to evaluate an unsu-
pervised clustering model.B3 The metric most commonly computed for unsupervised model eval-

uation is a generalization of 𝐹1 for clustering tasks called B3 (Bagga and
Baldwin 1998). The B3 precision and recall are defined as follows: Bagga and Baldwin, “Entity-Based

Cross-Document Coreferencing Using
the Vector Space Model” acl 1998B3 precision(𝑔, 𝑐) = 𝔼

X,Y∼𝒰(𝒟ℛ)
𝑃 (𝑔(X) = 𝑔(Y) ∣ 𝑐(X) = 𝑐(Y))

B3 recall(𝑔, 𝑐) = 𝔼
X,Y∼𝒰(𝒟ℛ)

𝑃 (𝑐(X) = 𝑐(Y) ∣ 𝑔(X) = 𝑔(Y))

As precision and recall can be trivially maximized by putting each sample
in its own cluster or by clustering all samples into a single class, the main
metric B3 𝐹1 is defined as the harmonic mean of precision and recall:

B3𝐹1(𝑔, 𝑐) =
2

B3 precision(𝑔, 𝑐)−1 +B3 recall(𝑔, 𝑐)−1

https://aclanthology.org/P98-1012
https://aclanthology.org/P98-1012
https://aclanthology.org/P98-1012
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While the usual precision (Section 2.3.1) can be seen as the probability
that a sample with a given prediction is correct, the B3 precision cannot
use the correct relation as a reference to determine the correctness of a
prediction. Instead, whether an assignment is correct is computed as the
expectation that a sample is accurately classified relatively to all other
samples grouped in the same cluster.

V-measure Another metric is the entropy-based V-measure (Rosenberg
and Hirschberg 2007). This metric is defined by homogeneity and com- Rosenberg and Hirschberg, “V-Mea-

sure: A Conditional Entropy-Based
External Cluster Evaluation Measure”
emnlp 2007

pleteness, which are akin to B3 precision and recall but rely on conditional
entropy. For a cluster to be homogeneous, we want most of its elements to
convey the same gold relation. In other words, the distribution of gold re-
lations inside a cluster must have low entropy. This entropy is normalized
by the unconditioned entropy of the gold relations to ensure that it does
not depend on the size of the dataset:

homogeneity(𝑔, 𝑐) = 1 −
H (𝑐(X) ∣ 𝑔(X))

H (𝑐(X))
.

Similarly, for a cluster to be complete, we want all the elements conveying
the same gold relation to be captured by this cluster. In other words, the
distribution of clusters inside a gold relation must have low entropy:

completeness(𝑔, 𝑐) = 1 −
H (𝑔(X) ∣ 𝑐(X))

H (𝑔(X))
.

As B3, the V-measure is summarized by the 𝐹1 value:

V-measure(𝑔, 𝑐) = 2
homogeneity(𝑔, 𝑐)−1 + completeness(𝑔, 𝑐)−1 .

Compared to B3, the V-measure penalizes small impurities in a rela-

B3 < > V-measure

Figure 2.13: Comparison of B3 and V-
measure. Samples conveying three dif-
ferent relations indicated by shape and
color are clustered into three boxes.
The two rows represent two differ-
ent clusterings, B3 favors the first one
while V-measure favors the second. V-
measure prefers the second clustering
since the blue star cluster is kept pure;
on the other hand, the green circle clus-
ter is impure no matter what, so its pu-
rity is not taken as much into account
by the V-measure compared to B3.

tively “pure” cluster more harshly than in less pure ones. Symmetrically,
it penalizes a degradation of a well-clustered relation more than of a less-
well-clustered one. This difference is illustrated in Figure 2.13.

Adjusted Rand Index The Rand index (ri, Rand 1971) is the last
clustering metric we consider, it is defined as the probability that cluster
and gold assignments are compatible:

ri(𝑔, 𝑐) = 𝔼
X,Y

[𝑃 (𝑐(X) = 𝑐(Y) ⇔ 𝑔(X) = 𝑔(Y))]

In other words, given two samples, the ri is improved when both samples
are in the same cluster and convey the same gold relation or when both
samples are in different clusters and convey different relations; otherwise,
the ri deteriorates. The adjusted Rand index (ari, Hubert and Arabie
1985) is a normalization of the Rand index such that a random assignment Hubert and Arabie, “Comparing parti-

tions” joc 1985has an ari of 0, and the maximum is 1:

ari(𝑔, 𝑐) =
ri(𝑔, 𝑐) − 𝔼

𝑐∼𝒰(ℛ𝒟)
[ri(𝑔, 𝑐)]

max
𝑐∈ℛ𝒟

ri(𝑔, 𝑐) − 𝔼
𝑐∼𝒰(ℛ𝒟)

[ri(𝑔, 𝑐)]

In practice, the ari can be computed from the elements of the confusion
matrix. Compared to the previous metrics, ari will be less sensitive to a
discrepancy between precision–homogeneity and recall–completeness since
it is not a harmonic mean of both.

https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://link.springer.com/content/pdf/10.1007/BF01908075.pdf
https://link.springer.com/content/pdf/10.1007/BF01908075.pdf
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2.5.1.2 Few-shot
This section only presents Few-shot
evaluation. It is possible—and quite
common—to train a model using a
few-shot objective, usually as a fine-
tuning phase before a few-shot evalu-
ation. Since we are mostly interested
in unsupervised approaches, we do not
delve into few-shot training. See Han
et al. (2018) for details.

Clustering metrics are problematic since producing a clustering with no a
priori knowledge on the relation schema ℛ leads to unsolvable problems:

• Should the relation sibling be cut into brother and sister?

• Is the relation between a country and its capital the same as the one
between a county and its seat?

• Is the ear part of the head in the same fashion that the star Altair
is part of the Aquila constellation?

All of these questions can be answered differently depending on the de-
sign of the underlying knowledge base. However, unsupervised clustering
algorithms do not depend on ℛ. They must decide whether “Phaedra is
the sister of Ariadne” and “Castor is the brother of Pollux” go inside the
same cluster independently of these design choices.

Fine-tuning on a supervised dataset solves this problem but adds an-
other. The evaluation no longer assesses the proficiency of a model to learn
from unlabeled data alone; it also evaluates its ability to adapt to labeled
samples. Furthermore, the smaller the labeled dataset is, the more results
have high variance. On the other hand, the larger the labeled dataset is,
the less the experiment evaluates the unsupervised phase.

A few-shot evaluation can be used to answer these caveats. Instead
of evaluating a clustering of the samples, few-shot experiments evaluate
a similarity function between samples: sim ∶ 𝒟 × 𝒟 → ℝ. Given a query
sample 𝑥(𝑞) and a set of candidates 𝒙(𝑐) = {𝑥(𝑐)

𝑖 ∣ 𝑖 = 1,… ,𝐶}, the model 𝐶 is the number of candidates, in Ta-
ble 2.2 we have 𝐶 = 5.is evaluated on whether it is able to find the candidate conveying the same

relation as the query. This is simply reported as an accuracy by comparing
argmax𝑥∈𝒙(𝑐) sim(𝑥(𝑞), 𝑥) with the correct candidate.

Query:
It flows into the Hörsel𝑒2

in Eisenach𝑒1
.

Candidates:
It is remake of Hindi𝑒2

film “Tezaab𝑒1
”.

Cynidr𝑒1
was the son of St Gwladys𝑒2

.
→Herron Island𝑒1

lies in Case Inlet𝑒2
.

He gained the support of Admiral𝑒2
Edward Russell𝑒1

.
ngc 271𝑒1

is a spiral galaxy in the constellation Cetus𝑒2
.

Table 2.2: Few-shot problem. For ease
of reading, the entity identifiers—such
as Q450036 for “Hörsel”—are not given.
Both the query and the third candidate
convey the relation P206 located in or
next to body of water.

Table 2.2 gives an example of a few-shot problem. It illustrates the
five-way one-shot problem, meaning that we must choose a relation among
five and that each of the five relations is represented by a single sample.
Another popular variant is the ten-way five-shot problem: the candidates
are split into ten bags of five samples each, all samples in a bag convey
the same relation, and the goal is to predict the bag in which the query
belongs. Candidates are sometimes referred to as “train set” and the query Quite confusingly, they can also be re-

ferred to as “meta-train” and “meta-
test.” Indeed, to follow the usual se-
mantic of the “meta-” prefix, the
“meta-sets” should refer to sets of
(query, candidates) tuples, not the can-
didates themselves.

as “test set” since this can be seen as an extremely small dataset with five
training samples and one test sample.

FewRel, described in Section C.2, is the standard few-shot dataset. In
FewRel, Altair is not P361 part of Aquila, it is P59 part of constellation
Aquila. However, this design decision does not influence the evaluation.
Given the query “Altair is located in the Aquila constellation,” a model

https://www.wikidata.org/wiki/Q450036
https://www.wikidata.org/wiki/Property:P206
https://www.wikidata.org/wiki/Property:P361
https://www.wikidata.org/wiki/Property:P59
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ought to rank this sample as more similar to samples conveying part of
constellation than to those conveying other kinds of part of relationships.
If FewRel made the opposite design choice, the model would still be able
to achieve high accuracy by ensuring part of samples are similar. The
decision to split or not the part of relation should be of no concern to the
unsupervised model.

2.5.2 Open Information Extraction
In Open information extraction (oie, Banko et al. 2007), the closed- Banko et al., “Open Information Ex-

traction from the Web” ijcai 2007domain assumption (Section 2.1.1.2) is neither made for relations nor
entities, which are extracted jointly. Instead ℰ and ℛ are implicitly de-
fined from the language itself, typically a fact (𝑒1, 𝑟, 𝑒2) is expressed as a
triplet such as (noun phrase, verb phrase, noun phrase). This makes oie
particularly interesting when processing large amounts of data from the
web, where there can be many unanticipated relations of interest.

This section focuses on TextRunner, the first model implementing oie.
It uses an aggregate extraction setup where 𝒟 is directly mapped to 𝒟kb,
with the peculiarity that 𝒟kb is defined using surface forms only. The hy-
pothesis on which TextRunner relies is that the surface form of the relation
conveyed by a sentence appears in the path between the two entities in its
dependency tree. In the oie setup, these surface forms can then be used
as labels for the conveyed relations, thereby using the language itself as
the relation domain ℛ. TextRunner can be split into three parts:

The Learner is a naive Bayes classifier, trained on a small dataset to
predict whether a fact (𝑒1, 𝑟, 𝑒2) is trustworthy. To extract a set of
samples for this task, a dependency parser (Figure 2.4) is run on
the dataset and tuples (𝑒1, 𝑟, 𝑒2) are extracted where 𝑒1 and 𝑒2 are
base noun phrases and 𝑟 is the dependency path between the two
entities. The tuples are then automatically labeled as trustworthy
or not according to a set of heuristics such as the length of the
dependency path and whether it crosses a sentence boundary. The
naive Bayes classifier is then trained to predict the trustworthiness
of a tuple given a set of hand-engineered features (Section 2.3.4).

The Extractor extracts trustworthy facts on the whole dataset. The fea-
tures on which the Learner is built only depend on part-of-speech
(pos) tags (noun, verb, adjective…) such that the Extractor does
not need to run a dependency parser on all the sentences in the
entire dataset. While the Learner uses the dependency path for 𝑟, Dependency parsers tend to be a lot

slower than pos taggers.the Extractor uses the infix from which non-essential phrases (such
as adverbs) are eliminated heuristically. Thus the Extractor simply
runs a pos tagger on all sentences, finds all possible entities 𝑒, es-
timates a probable relation 𝑟 and filters them using the Learner to
output a set of trustworthy facts.

The Assessor assigns a probability that a fact is true from redundancy in
the dataset using the urns model of Downey et al. (2005). This model
uses a binomial distribution to model the probability that a correct
fact appears 𝑘 times among 𝑛 extractions with a fixed repetition
rate. Furthermore, it assumes both correct and incorrect facts follow
different Zipf’s laws. The shape parameter 𝑠𝐼 of the distribution of
incorrect facts is assumed to be 1. While the shape parameter 𝑠𝐶 of

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-429.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-429.pdf
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the distribution of correct facts as well as the number of correct facts
𝑁𝐶 are estimated using an expectation–maximization algorithm.

Zipf’s law comes from the externalist
linguistic school. It follows from the ob-
servation that the frequency of the sec-
ond most common word is half the one
of the most frequent word, that the one
of the third most common word is a
third of the one of the most frequent,
etc. The same distribution can often
be observed in information extraction.
Zipf’s law is parametrized by a shape
𝑠 and the number of elements 𝑁:

𝑃(𝑥 ∣ 𝑠) ∝ {𝑥−𝑠 for 𝑥 ∈ {1, … , 𝑁}
0 otherwise

A Zipf’s law is easily recognizable on a
log–log scale, its probability mass func-
tion being a straight line. Take for ex-
ample the Zipf’s law with parameters
𝑠 = 2 and 𝑁 = 10:

100 101

10−2

10−1

100

In
the expectation step, the binomial and Zipf distribution assumptions
can be combined using Bayes’ theorem to estimate whether a fact is
correct or not. In the maximization step, the parameters 𝑠𝐶 and 𝑁𝐶
are estimated.

Banko et al. (2007) compare their approach to KnowItAll, an earlier
work similar to oie but needing a list of relations (surface forms) as input
to define the target relation schema ℛ. On a set of ten relations, they
manually labeled the extracted facts as correct or not, obtaining an error
rate of 12% for TextRunner and 18% for KnowItAll. They further run
their model on 9 million web pages, extracting 7.8 million facts.

A limitation of the oie approach is that it heavily depends on the raw
surface form and suffers from bad generalization. The two facts “Bletchley
Park known as Station X” and “Bletchley Park codenamed Station X”
are considered different by TextRunner since the surface forms conveying
the relations in the underlying sentences are different. Subsequent oie
approaches try to address this problem, such as Yates et al. (2007), which
extend TextRunner with a resolver (Yates and Etzioni 2007) to merge
synonyms. However, this problem is not overcome yet and is still an active
area of research. Furthermore, since the input of oie systems is often taken
to be the largest possible chunk of the web, and since the extracted facts
do not follow a strict nomenclature, a fair evaluation of oie systems among
themselves or to other unsupervised relation extraction models is still not
feasible.

2.5.3 Clustering Surface Forms
The first unsupervised relation extraction model was the clustering ap-
proach of Hasegawa et al. (2004). It is somewhat similar to dirt (Sec- Hasegawa et al., “Discovering Rela-

tions among Named Entities from
Large Corpora” acl 2004

tion 2.3.3) in that it uses a similarity between samples. However, their
work goes one step further by using this similarity to build relation classes.
Furthermore, Hasegawa et al. (2004) does not assume ℋpullback, i.e. it does
not assume that the sentence and entities convey the relation separately,
on their own. Instead, its basic assumption is that the infix between two
entities is the expression of the conveyed relation. As such, if two infixes As a reminder, the infix is the span

of text between the two entities in the
sentence.

are similar, the sentences convey similar relations. Furthermore, ner (see
the introduction of Chapter 2) is performed on the text instead of sim-
ple entity chunking. This means that all entities are tagged with a type
such as “organization” and “person.” These types strongly constrain the
relations through the following assumption:

Following Section 1.4.1, ̆𝑟 is the con-
verse relation of 𝑟, i.e. the relation with
𝑒1 and 𝑒2 in the reverse order. • is the
composition operator and 𝟏𝑋 the com-
plete relation over 𝑋. 𝑟 • ̆𝑟 is the rela-
tion linking all the entities which ap-
pear as subject (𝑒1, on the left hand
side) of 𝑟 to themselves. This relation
is constrained to be between entities in
𝑋. Less relevant to this formula, 𝑟 • ̆𝑟
also links together entities linked by 𝑟
to the same object.

Assumption ℋtype: All entities have a unique type, and all relations are
left and right restricted to one of these types.
∃𝒯 partition of ℰ ∶ ∀𝑟 ∈ ℛ ∶ ∃𝑋, 𝑌 ∈ 𝒯 ∶ 𝑟• ̆𝑟∪𝟏𝑋 = 𝟏𝑋 ∧ ̆𝑟 •𝑟∪𝟏𝑌 = 𝟏𝑌

Here, we assume that the partition 𝒯
is not degenerate and somewhat looks
like a standard ner classification out-
put. Otherwise, 𝒯 = {ℰ} is a valid par-
tition of ℰ, and this assumption is tau-
tological.

This is a natural assumption for many relations; for example, the re-
lation born in is always between a person and a geopolitical entity (gpe).

Given a pair of entities (𝑒1, 𝑒2) ∈ ℰ2, Hasegawa et al. (2004) collect all
samples in which they appear and extract a single vector representation
from all these samples. This representation is built from the bag of words
of the infixes weighted by tf–idf (term frequency–inverse document fre-
quency). Since a bag of words discards the ordering of the words or entities,

https://aclanthology.org/P04-1053
https://aclanthology.org/P04-1053
https://aclanthology.org/P04-1053
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the variant of tf–idf used takes into account the directionality:

tf(𝑤, 𝑒1, 𝑒2) =number of times 𝑤 appears between 𝑒1 and 𝑒2

− number of times 𝑤 appears between 𝑒2 and 𝑒1

idf(𝑤) =(number of documents in which 𝑤 appears)−1

tf–idf(𝑤, 𝑒1, 𝑒2) =tf(𝑤, 𝑒1, 𝑒2) ⋅ idf(𝑤)

From this definition we obtain a representation 𝒛𝑒1,𝑒2
∈ ℝ𝑉 of the pair

(𝑒1, 𝑒2) ∈ ℰ2 by taking the value of tf–idf(𝑤, 𝑒1, 𝑒2) for all 𝑤 ∈ 𝑉. Given
two entity pairs, their similarity is defined as follow:

sim(𝒆, 𝒆′) = cos(𝒛𝒆, 𝒛𝒆′) =
𝒛𝒆 ⋅ 𝒛𝒆′

‖𝒛𝒆‖‖𝒛𝒆′‖
.

Using this similarity function, the complete-linkage clustering algo-
rithm43 (Defays 1977) is used to extract relations classes. Since each pair 43 The complete-linkage algorithm is

an agglomerative hierarchical cluster-
ing method also called farthest neigh-
bor clustering. The algorithm starts
with each sample in its own cluster
then merges the clusters two by two
until reaching the desired number of
clusters. At each step, the two closest
clusters are merged together, with the
distance between clusters being defined
as the distance between their farthest
elements.

end up in a single cluster, this assumes ℋ1-adjacency. Hasegawa et al. (2004)
evaluate their method on articles from the New York Times (nyt). They
extract relations classes by first clustering all 𝒛𝑒1,𝑒2

where 𝑒1 has the type
person and 𝑒2 has the type gpe, and then by clustering all 𝒛𝑒1,𝑒2

where
both 𝑒1 and 𝑒2 are organizations. By clustering separately different type
combinations, they ensure that ℋtype is enforced.

They furthermore experiment with automatic labeling of the clusters
with the most frequent word appearing in the samples. Apart from the
relation prime minister, which is simply labeled “minister” since only un-
igrams are considered, the labels are rather on point. To measure the
performance of their model, they use a classical supervised 𝐹1 where each
cluster is labeled by the majority gold relation. Using this somewhat un-
adapted metric, they reach an 𝐹1 of 82% on person–gpe pairs and an
𝐹1 of 77% on organization–organization pairs. This relatively high score
compared to subsequent models can be explained by the small size of their
dataset, which is further split by entity type. Furthermore, note that some
generic relations such as part of do not follow ℋtype and, as such, cannot
be captured.

2.5.4 Rel-lda
Rel-lda (Yao et al. 2011) is a probabilistic generative model inspired by Yao et al., “Structured Relation

Discovery using Generative Models”
emnlp 2011

lda. It works by clustering sentences: each relation defines a distribution
over a handcrafted set of sentence features (Section 2.3.4) describing the
relationship between the two entities in the text. Furthermore, rel-lda
models the propensity of a relation at the level of the document; thus, it is
not strictly speaking a sentence-level relation extractor. The idea behind
modeling this additional information is that when a relation such as P413
position played on team appears in a document, other relations pertaining
to sports are more likely to appear. Figure 2.14 gives the plate diagram
for the rel-lda model. It uses the following variables:

𝐟𝑖 the features of the 𝑖-th sample, where f𝑖𝑗 is its 𝑗-th feature
r𝑖 the relation of the 𝑖-th sample
θ𝑑 the distribution of relations in the document 𝑑
ϕ𝑟𝑗 the probability of the 𝑗-th feature to occurs for the relation 𝑟
𝛼 the Dirichlet prior for θ𝑑
𝛽 the Dirichlet prior for ϕ𝑟𝑗

https://aclanthology.org/D11-1135
https://aclanthology.org/D11-1135
https://www.wikidata.org/wiki/Property:P413
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The generative process is listed as Algorithm 2.4. The learning process
uses the expectation–maximization algorithm. In the variational E-step,
the relation for each sample 𝑟𝑖 is sampled from the categorical distribution:

𝑃(𝑟𝑖 ∣ 𝒇𝑖, 𝑑) ∝ 𝑃(𝑟𝑖 ∣ 𝑑)
𝑚

∏
𝑗=1

𝑃(𝑓𝑖𝑗 ∣ 𝑟𝑖)

where 𝑃(𝑟 ∣ 𝑑) is defined by 𝜃𝑑 and 𝑃(𝑓𝑖𝑗 ∣ 𝑟) is defined by 𝜙𝑟𝑗. In the
f

r𝑖

⋯f𝑖𝑗 f𝑖𝑘

θ𝑑 𝛼

ϕ𝑟𝑗

𝛽

𝑛𝑑

𝐷

|ℛ|

Figure 2.14: Rel-lda plate diagram.
𝐷 is the number of documents in
the dataset and 𝑛𝑑 is the number of
samples in the document 𝑑. For each
sample 𝑖, there are several features
f𝑖1, f𝑖2, … , f𝑖𝑚, accordingly for each re-
lation 𝑟, there are also several feature
priors ϕ𝑟1, … , ϕ𝑟𝑚, however for sim-
plicity, a single prior is shown here.
algorithm Rel-lda Generation

Inputs: 𝛼 relations hyperprior
𝛽 features hyperprior

Output: 𝑭 observed features

for all relations 𝑟 do
for all features 𝑗 do

Choose 𝜙𝑟𝑗 ∼ Dir(𝛽)
for all documents 𝑑 do

Choose 𝜃𝑑 ∼ Dir(𝛼)
for all samples 𝑖 in 𝑑 do

Choose 𝑟 ∼ Cat(𝜃𝑑)
for all features 𝑗 do

Choose 𝑓𝑖𝑗 ∼ Cat(𝜙𝑟𝑗)
output 𝑭

Algorithm 2.4: The rel-lda generative
process. Dir are Dirichlet distributions.
Cat are categorical distributions.

M-step, the values for 𝜃𝑑 are computed by counting the number of times
each relation appears in 𝑑 and the hyperprior 𝛼; and the value for 𝜙𝑟𝑗 is
computed from the number of co-occurrences of the 𝑗-th feature with the
relation 𝑟 and from 𝛽.

Yao et al. (2011) evaluate their model on the New York Times by
comparing their clusters to relations in Freebase. However, because of the
incompleteness of knowledge bases, they only evaluate the recall on Free-
base and use manual annotation to estimate the precision. Even though
the original article lacks a significant comparison, subsequent approaches
often compare to rel-lda.

A first limitation of their approach is that given the relation 𝑟, the
features 𝑓 are independents. Since the entities are among those features,
this means that 𝑃(𝑒2 ∣ 𝑒1, 𝑟) = 𝑃(𝑒2 ∣ 𝑟) which is clearly false.

Assumption ℋbiclique: Given a relation, the entities are independent of
one another: e1 ⟂⟂ e2 ∣ r. In other words, given a relation, all possible head
entities are connected to all possible tail entities.
∀𝑟 ∈ ℛ ∶ ∃𝐴,𝐵 ⊆ ℰ ∶ 𝑟 • ̆𝑟 = 𝟏𝐴 ∧ ̆𝑟 • 𝑟 = 𝟏𝐵

This is a widespread problem with generative models which are in-
clined to make extensive independence assumptions. Furthermore, gener-
ative models have an implicit bias that all observed features are related to
relation extraction, even though they might measures other aspect of the
sample (style, idiolectal word choice, etc). This might results in the model
focusing on features not related to the relation extraction task.

Several extensions of rel-lda were proposed. Type-lda (Yao et al.
2011) purpose to model entity types which are latent variables of entity
features, themselves generated from the relation variable 𝑟, thus softly en-
forcing ℋtype. Sense-lda (Yao et al. 2012) use a lda-like model for each Yao et al., “Unsupervised Relation

Discovery with Sense Disambiguation”
acl 2012

different dependency path. Clusters for different paths are then merged
into relation clusters.

Rel-lda is an important work in that it proposes a simple evaluation
framework; in particular, it introduces the B3 metric to unsupervised re-
lation extraction. However, it predates the advent of neural networks and
distributed representations in relation extraction, by which it was bound
to be replaced.

2.5.5 Variational Autoencoder for Relation Extraction
Marcheggiani and Titov (2016) were first to propose a discriminative un- Marcheggiani and Titov, “Discrete-

State Variational Autoencoders for
Joint Discovery and Factorization of
Relations” tacl 2016

supervised relation extraction model. Discriminative models directly solve
the inference problem of finding the posterior 𝑃(𝑟 ∣ 𝑥). This is in con-
trast to generative models such as rel-lda which determine 𝑃(𝑥 ∣ 𝑟) and
then use Bayes’ theorem to compute 𝑃(𝑟 ∣ 𝑥) and make a prediction. The
model of Marcheggiani and Titov (2016) is closely related to the approach
presented in Chapter 3. It is a clustering model, meaning that it produces

https://aclanthology.org/P12-1075
https://aclanthology.org/P12-1075
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
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clusters of samples where the samples in each cluster all convey the same
relation. To do so, it uses a variational autoencoder model (vae, Kingma
and Welling 2014) that we now describe. Kingma and Welling, “Auto-Encoding

Variational Bayes” iclr 2014

𝐱

𝐳𝝓

𝜽
𝑁

Figure 2.15: vae plate diagram. 𝑁 is
the number of samples in the dataset.

Variational Autoencoder The goal of a variational autoencoder is to
learn a latent variable 𝒛 which explains the distribution of an observed
variable 𝒙. For our problem, the latent variable corresponds to the relation
conveyed by the sample 𝒙. We assume we know the generative process
𝑃(𝒙 ∣ 𝒛; 𝜽), i.e. this process is the “decoder” (parametrized by 𝜽): given
the latent variable it produces a sample. However, the process of interest
to us is to estimate the latent variable—the relation—from a sample, that
is 𝑃(𝒛 ∣ 𝒙; 𝜽). Using Bayes’ theorem we can reformulate this posterior as
𝑃(𝒙 ∣ 𝒛; 𝜽)𝑃 (𝒛 ∣ 𝜽) ∕ 𝑃(𝒙 ∣ 𝜽). However, computing 𝑃(𝒙 ∣ 𝜽) is often
intractable, especially when the likelihood 𝑃(𝒙 ∣ 𝒛; 𝜽) is modeled using
a complicated function like a neural network. To solve this problem, a
variational approach is used: another model 𝑄 parametrized by 𝝓 is used
to approximate 𝑃(𝒛 ∣ 𝒙; 𝜽) as well as possible. This approximation 𝑄(𝒛 ∣
𝒙;𝝓) is the “encoder” since it finds the latent variable associated with a
sample. The model can then be trained by maximizing the log-likelihood
given the latent variable estimated by 𝑄 and by minimizing the difference
between the latent variable predicted by 𝑄 and the desired prior 𝑃(𝒛 ∣ 𝜽):

𝐽elbo(𝜽, 𝝓) = 𝔼
𝑄(𝒛∣𝒙;𝝓)

[log𝑃(𝒙 ∣ 𝒛; 𝜽)] − Dkl(𝑄(𝒛 ∣ 𝒙;𝝓) ‖ 𝑃 (𝒛 ∣ 𝜽)) (2.8)

A justification for this objective can also be found in the fact that it’s a
lower bound of the log marginal likelihood log𝑃(𝒙 ∣ 𝜽), hence its name:
evidence lower bound (elbo). The first part of the objective is often re-
ferred to as the negative reconstruction loss since it seeks to reconstruct
the sample 𝒙 after it went through the encoder 𝑄 and the decoder 𝑃. One
last problem with the vae approximation relates to the reconstruction
loss, the estimation of the expectation over 𝑄(𝒛 ∣ 𝒙;𝝓) not being differen-
tiable which makes the model—in particular 𝝓—untrainable by gradient
descent. This is usually solved using the reparameterization trick: sam-
pling from 𝑄(𝒛 ∣ 𝒙;𝝓) can often be done in a two steps process: sampling
from a simple distribution like 𝜖 ∼ N (0, 1) then transforming this sample
using a deterministic process parametrized by 𝝓. The plate diagram of the
vae is given Figure 2.15 where the model 𝑃 is marked with solid lines and
the variational approximation 𝑄 is marked with dashed lines.

𝐞

rs

𝝓

𝜽|𝒟|

Figure 2.16: Marcheggiani and Titov
(2016) plate diagram.

Coming back to the model of Marcheggiani and Titov (2016), it is a
conditional 𝛽-vae,44 i.e. the whole process is conditioned on an additional

44 The 𝛽 in “𝛽-vae” simply indi-
cates that the Kullback–Leibler term
in Equation 2.8 is weighted by a hyper-
parameter 𝛽. More details are given in
Chapter 3.

variable. Indeed, in their approach, only the entities 𝒆 ∈ ℰ2 are recon-
structed, while the sentence 𝑠 ∈ 𝒮 simply conditions the whole process.
The latent variable explaining the observed entities is expected to be the
relation conveyed by the sample. The resulting model’s plate diagram is
given in Figure 2.16. This approach is defined by two models:

The Encoder 𝑄(r ∣ 𝒆, 𝑠; 𝝓) is the relation extraction model properly
speaking. It is defined as a linear model on top of handcrafted fea-
tures (Section 2.3.4). For each sample, the model outputs a distri-
bution over a predefined number of relations.

The Decoder 𝑃(𝒆 ∣ 𝑟; 𝜽) is a model estimating how likely it is for two
entities to be linked by a relation. It is a reconstruction model since

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
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the entities 𝒆 are known and need to be retrieved from the latent
relation 𝑟 sampled from the encoder. It is defined using selectional
preferences (Section 1.4.2.1) and rescal (Section 1.4.2.2).

Note that to label a sample (𝒆, 𝑠) ∈ 𝒟, Marcheggiani and Titov (2016)
simply select argmax𝑟∈ℛ 𝑄(𝑟 ∣ 𝒆, 𝑠; 𝝓), meaning that the decoder is not
used during evaluation. Its sole purpose is to provide a supervision signal
to the encoder through the maximization of 𝐽elbo. The whole autoencoder
can also be interpreted as being trained by a surrogate task of filling-in
entity blanks. This is the interpretation we use in Chapter 3.

For Equation 2.8 to be well defined, a prior on the relations must also be
selected; Marcheggiani and Titov (2016) make the following assumption:

Assumption ℋuniform: All relations occur with equal frequency.

∀𝑟 ∈ ℛ∶ 𝑃(𝑟) = 1
|ℛ|

They evaluate their approach on the New York Times distantly super-
vised by Freebase. By inducing 100 clusters, they show an improvement of
the B3 𝐹1 compared to dirt (Section 2.3.3) and rel-lda (Section 2.5.4).
They also experiment using semi-supervised evaluation (Section 2.5.1) by
pre-training their decoder on a subset of Freebase before training their
encoder as described above; this additional supervision improves the 𝐹1
by more than 27%. These results were further improved by Yuan and El-
dardiry (2021), which proposed to split the latent variable into a relation
𝑟 and sentence information 𝑧, with 𝑧 conditioned on 𝑟 and using a loss
including the reconstruction of the sentence 𝑠 from 𝑧.

2.5.6 Matching the Blanks
Matching the blanks (mtb, Soares et al. 2019) is an unsupervised method Soares et al., “Matching the Blanks:

Distributional Similarity for Relation
Learning” acl 2019

that does not attempt to cluster samples but rather learns a represen-
tation of the relational semantics they convey. More precisely, this rep-
resentation is used to measure the similarity between samples such that
similar samples convey similar relations. As such, it is either evaluated
as a supervised pre-training method (Section 2.5.1) or using a few-shot
dataset (Section 2.5.1.2). The mtb article introduces several methods to
extract an entity-aware representation of a sentence using bert; this was
discussed in Section 2.3.7. This section focuses on the unsupervised train-
ing. As a reminder, we refer to sentence encoder of mtb by the function
bertcoder ∶ 𝒮 → ℝ𝑑 illustrated Figure 2.7. Given this encoder, mtb defines
the similarity between samples as:

sim(𝑠, 𝑠′) = 𝜎(bertcoder(𝑠)𝖳 bertcoder(𝑠′)) (2.9)

This similarity function can be used to evaluate the model on a few-
shot task. Note that this function completely ignores entities identifiers
(e.g. Q211539), but can still exploit the entities surface forms (e.g. “Peter
Singer”) through the sentence 𝑠 ∈ 𝒮. This model can be used as is, without
any training other than the masked language model pre-training of bert
(Section 1.3.4.2) and reach an accuracy of 72.9% on the FewRel 5 way 1
shot dataset.

Soares et al. (2019) propose a training objective to fine-tune bert for
the unsupervised relation extraction task. This objective is called matching

https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://www.wikidata.org/wiki/Q211539
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the blanks. It assumes that two sentences containing the same entities con-
vey the same relation. This is exactly ℋ1-adjacency as given Section 2.3.2.
The probability that two sentences convey the same relation (D = 1) is
taken from the similarity function: 𝑃(D = 1 ∣ 𝑠, 𝑠′) = sim(𝑠, 𝑠′). Given
this, the ℋ1-adjacency assumption is translated into the following negative
sampling (Section 1.2.1.3) loss:

ℒmtb = −1
|𝒟|2

∑
(𝒆,𝑠)∈𝒟

(𝒆′,𝑠′)∈𝒟

𝛿𝒆,𝒆′ log𝑃(D = 1 ∣ 𝑠, 𝑠′)
+(1 − 𝛿𝒆,𝒆′) log𝑃(D = 0 ∣ 𝑠, 𝑠′)

(2.10)

This loss is minimized through gradient descent by sampling random posi-
tive and negative sentence pairs. These pairs can be obtained by comparing
the entity identifier without the need for any supervision.

A problem with this approach is that the bertcoder model can simply
learn to perform entity linking on the entities surface forms in the sentences
𝑠, thus minimizing Equation 2.10 by predicting whether 𝒆 = 𝒆′. We want
to avoid this since this would only work on samples seen during training
and would not generalize to unseen entities. To ensure the model predicts
whether the samples convey the same relation from the sentences 𝑠 and 𝑠′

alone, blanks are introduced. A special token <blank/> is substituted to
the entities as follow:

<blank/>𝑒1
, inspired by Cale’s earlier cover, recorded one of

the most acclaimed versions of “<blank/>𝑒2
.”

<blank/>𝑒1
’s rendition of “<blank/>𝑒2

” has been called
“one of the great songs” by Time…

This is similar to the sample corruption of bert (Section 1.3.4.2), indeed
like bert, the entity surface forms are blanked only a fraction45 of the time 45 Soares et al. (2019) blanks each en-

tity with a probability of 70%, mean-
ing that only 9% of training samples
have both of their entity surface forms
intact.

so as to not confuse the model when real entities appear during evaluation.
Another problem with Equation 2.10 is that the negative sample space

𝒆 ≠ 𝒆′ is extremely large. Instead of taking negative samples randomly
in this space, Soares et al. (2019) propose to take only samples which are
likely to be close to positive ones. To this end, the 𝒆 ≠ 𝒆′ condition is
actually replaced with the following one:

|{𝑒1, 𝑒2} ∩ {𝑒′
1, 𝑒

′
2}| = 1

These are called “strong negatives”: negative samples that have precisely
one entity in common. Negative sampling, especially with strong negatives,
leads to another unfortunate assumption:

Assumption ℋ1 → 1: All relations are one-to-one.
∀𝑟 ∈ ℛ∶ 𝑟 • ̆𝑟 ∪ 𝑰 = ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰

Indeed, if a relation is not one-to-one, then there exists two facts 𝑒1 𝑟 𝑒2
and 𝑒1 𝑟 𝑒3 (or respectively with ̆𝑟); however these two facts form a strong
negative pair, therefore as per ℒmtb their representations must be pulled
away from one another.

Despite these assumptions, mtb showcase impressive results, both as
a few-shot and supervised pre-training method. It obtained state-of-the-
art results both on the SemEval 2010 Task 8 dataset with a macro-↼⇁𝐹1

As a reminder, ↼⇁𝐹1 is the half-directed
metric described Section 2.3.1. It is re-
ferred to as “taking directionality into
account” in the SemEval dataset.

of
82.7% and on FewRel with an accuracy of 90.1% on the 5 way 1 shot task.



2 Relation Extraction 80

2.5.7 Selfore
Selfore (X. Hu et al. 2020) is a clustering approach similar to the one of X. Hu et al., “Selfore: Self-supervised

Relational Feature Learning for Open
Relation Extraction” emnlp 2020

Hasegawa et al. (2004) presented in Section 2.5.3 but using deep neural
network models for extracting sentence representations and for grouping
these representations into relation clusters. Since they follow the experi-
mental setup of Simon et al. (2019), which we present in Chapter 3, their
results are listed in that chapter.

Selfore uses mtb’s entity markers–entity start bertcoder sentence
representation. A clustering algorithm could be run to produce relation
classes from these representations a la Hasegawa et al. (2004). However, X.
Hu et al. (2020) introduce an iterative scheme to purify the clusters. This
scheme is illustrated in Figure 2.17 and works by alternatively optimizing
two losses ℒac and ℒrc.

The first loss ℒac is the clustering loss which comes from dec (Xie
et al. 2016). dec is a deep clustering algorithm that uses a denoising au- Xie et al., “Unsupervised Deep Em-

bedding for Clustering Analysis” icml
2016

toencoder (Vincent et al. 2010) to compress the input. In their case, the
input 𝒉 is the sentence encoded by bertcoder. The denoising autoencoder
is trained layer by layer with a small bottleneck which produces a com-
pressed representation of the sentence 𝒛 = Encoder(𝒉). This is the space
in which the clustering occurs. For each cluster 𝑗 = 1,… ,𝐾, a centroid46 46 The 𝑘-means clustering algorithm

is used to initialize the centroids. In
practice, the 𝑘-means clusters could di-
rectly be used as soft labels. However,
X. Hu et al. (2020) show that this un-
derperforms compared to refining the
clusters with ℒac.

𝝁𝑗 is learned such that a sentence is part of the cluster whose centroid
is the closest to its compressed representation. This is modeled with a
Student’s 𝑡-distribution with one degree of freedom centered around the
centroid:

bertcoder

𝑠

𝒉

Encoder

Classifier

ℒac

ℒrc

Figure 2.17: Selfore iterative algo-
rithm.

𝑞𝑖𝑗 =
(1 + ‖𝒛𝑖 −𝝁𝑗‖2)−1

∑𝑘(1 + ‖𝒛𝑖 −𝝁𝑘‖2)−1

To force the initial clusters to be more distinct, a target distribution 𝑝 is
defined as:

𝑝𝑖𝑗 =
𝑞2

𝑖𝑗 ∕ 𝑓𝑗

∑𝑘 𝑞
2
𝑖𝑘 ∕ 𝑓𝑘

(2.11)

where 𝑓𝑗 = ∑𝑖 𝑞𝑖𝑗 are soft cluster frequencies. To push 𝑸 towards 𝑷, a
Kullback–Leibler divergence is used:

ℒac = Dkl(𝑷 ‖ 𝑸) =
|𝒟|

∑
𝑖=1

𝐾

∑
𝑗=1

𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗

This loss is minimized by backpropagating to the cluster centroids 𝝁𝑗 and
to the encoder’s parameters in the dae. Note that the decoder of the
dae is only used for initializing the encoder such that the input can be
reconstructed.

Optimizing ℒac is the first step of Selfore; it assigns a pseudo-label
to each sample in the dataset. The second step is to train a classifier
to predict these pseudo-labels. The classifier is a simple multi-layer per-
ceptron trained with the usual cross-entropy classification loss, which is
called ℒrc in Selfore. This loss also backpropagate to the bertcoder thus
changing the sentence representations 𝒉. Selfore is an iterative algorithm:
changing the 𝒉 modifies the clustering found by dec. Thus, the two steps,
clustering and classification, are repeated several times until a stable label
assignment is found.

The central assumption of Selfore is that bertcoder already produces
a good representation for relation extraction, which, as we saw with the

https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://proceedings.mlr.press/v48/xieb16.html
https://proceedings.mlr.press/v48/xieb16.html


2.6 Conclusion 81

non-fine-tuned bertcoder score on FewRel in Section 2.5.6, is rather accu-
rate. However, Selfore also assumes ℋuniform, i.e. that all relations appear
with the same frequency. This assumption is enforced by ℒac, through the
normalization of the target distribution 𝑷 by soft cluster frequencies 𝑓𝑗.47 47 For further details, Xie et al. (2016)

contains an analysis of the dec clus-
tering algorithm on imbalanced mnist
data.

Indeed, the distribution 𝑷 is the original distribution 𝑸 more concentrated
(because of the square) and more uniform (because of the normalization
by 𝑓𝑗).

The interpretation of the concentration effect in terms of modeling
hypotheses is more complex. The variable 𝒉 is the concatenation of the
two entity embeddings. Let’s break down the bertcoder function into two
components: ctx1(𝑠) and ctx2(𝑠). These are simply the two contextualized
embeddings of <e1> and <e2> (Section 2.5.6), in other words the function
ctx contextualize an entity surface form inside its sentence. When two
sentence representations 𝒉 and 𝒉′ are close, their pseudo-labels tend to be
the same, and thus their relation also tend to be the same. In other words:

Assumption ℋctx(1-adjacency): Two samples with the same contextualized
representation of their entities’ surface forms convey the same relation.
∀(𝑠, 𝒆, 𝑟), (𝑠′, 𝒆′, 𝑟′) ∈ 𝒟ℛ ∶

ctx1(𝑠) = ctx1(𝑠′) ∧ ctx2(𝑠) = ctx2(𝑠′) ⟹ 𝑟 = 𝑟′

If we assume bertcoder only performs entity linking of the entities
surface form, then ctx𝑖(𝑠) = 𝑒𝑖 for 𝑖 = 1, 2, in this case ℋctx(1-adjacency)
collapses to ℋ1-adjacency, the contextualization inside the sentence 𝑠 is
ignored. On the other hand, if we assume bertcoder provides no infor-
mation about the entities and only encode the sentence, then ctx𝑖(𝑠) = 𝑠
for 𝑖 = 1, 2 and ℋctx(1-adjacency) only states that the entity identifiers
𝒆 ∈ ℰ2 should have no influence on the relation. The effective repercusion
of ℋctx(1-adjacency) lies somewhere half-way between these two extremes.

2.6 Conclusion
In this chapter, we introduced the relation extraction tasks (Section 2.1)
and the different supervision schema with which we can tackle them (Sec-
tion 2.2). As we showed, the development of supervised relation extrac-
tion models closely followed the evolution of nlp models introduced in
Section 1.3. This is particularly visible in Section 2.3, which follows the
progress of sentential relation extraction approaches. Furthermore, the ex-
pansion of the scale at which problems are tackled is visible both on the
nlp side with the word-level to sentence-level evolution and on the infor-
mation extraction side with the sentential to aggregate extraction evolu-
tion. The aggregate models, which are more aligned with the information
extraction field, are presented in Section 2.4. Within these models, we also
see the evolution from the simple max-pooling of miml (Section 2.4.2)
toward more sophisticated approaches which model the topology of the
dataset more finely (Section 2.4.5).

We limited our presentation of supervised models to those critical to
the development of unsupervised models. Several recent approaches pro-
pose to reframe supervised relation extraction—and other tasks—as lan-
guage modeling (Raffel et al. 2020)

Raffel et al., “Exploring the Limits of
Transfer Learning with a Unified Text-
to-Text Transformer” jmlr 2020

or question answering (Cohen et al.
2021)

Cohen et al., “Relation Classification
as Two-way Span-Prediction” under
review 2021

tasks. Since these approaches were not explored in the unsupervised
setup yet, we omit them from our related work.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2010.04829
https://arxiv.org/abs/2010.04829
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Finally, Section 2.5 focused on the specific setup of interest to this the-
sis: unsupervised relation extraction. This setup is particularly complex
due to the discrepancy between the expressiveness of our supervised mod-
els and the weakness of the semantic signal we are seeking to extract. As
we saw, modeling hypotheses are central to tackling this problem. Early
models, including supervised ones, relied on strong hypotheses to facilitate
training. However, while supervised models can now use deep neural net-
works without any hypothesis other than the unbiasedness of their data,
unsupervised models still need to rely on strong assumptions.

In the next section, we focus on unsupervised discriminative models,
in particular the vae model presented in Section 2.5.5. In particular, we
propose better losses for enforcing ℋuniform, which avoid problematic de-
generate solutions of the clustering relation extraction task.
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Chapter 3

Regularizing Discriminative Unsupervised
Relation ExtractionModels

“And once again I am I will not
say alone, no, that’s not like me, but,
how shall I say, I don’t know, restored
to myself, no, I never left myself, free,
yes, I don’t know what that means but
it’s the word I mean to use, free to
do what, to do nothing, to know, but
what, the laws of the mind perhaps, of
my mind, that for example water rises
in proportion as it drowns you and that
you would do better, at least no worse,
to obliterate texts than to blacken mar-
gins, to fill in the holes of words till all
is blank and flat and the whole ghastly
business looks like what is, senseless,
speechless, issueless misery.

— Samuel Beckett, Molloy (1955)

“Careful! We don’t want to learn
anything from this.

— Bill Watterson, Calvin and
Hobbes (1992)

This chapter is an adaptation of an ar-
ticle published at acl with some sup-
plementary results:
Étienne Simon et al. (July 2019).
“Unsupervised Information Extrac-
tion: Regularizing Discriminative Ap-
proaches with Relation Distribution
Losses”. In: Proceedings of the 57th An-
nual Meeting of the Association for
Computational Linguistics. Florence,
Italy: Association for Computational
Linguistics, pp. 1378–1387. doi: 10.1
8653/v1/P19-1133. url: https://www
.aclweb.org/anthology/P19-1133

All the works presented thus far follow the same underlying dynamic.
There is a movement away from symbolic representations toward dis-
tributed ones, as well as a movement away from shallow models toward
deeper ones. This can be seen in word, sentence and knowledge base rep-
resentations (Chapter 1), as well as in relation extraction (Chapter 2).
As we exposed in Chapter 2, a considerable amount of work has been
conducted on supervised or weakly-supervised relation extraction (Sec-
tions 2.3 and 2.4), with recent state-of-the-art models using deep neural
networks (Section 2.3.6). However, human annotation of text with knowl-
edge base triplets is expensive and virtually impractical when the number
of relations is large. Weakly-supervised methods such as distant supervi-
sion (Section 2.2.2) are also restricted to a handcrafted relation domain.
Going further, purely unsupervised relation extraction methods working
on raw texts, without any access to a knowledge base, have been developed
(Section 2.5).

The first unsupervised models used a clustering (Section 2.5.3) or
generative (Section 2.5.4) approach. The latter, which obtained state-of-
the-art performance, still makes a lot of simplifying hypotheses, such as
ℋbiclique, assuming that the entities are conditionally independent be-
tween themselves given the relation. We posit that discriminative ap-
proaches can help further expressiveness, especially considering recent re-
sults with neural network models. The open question then becomes how
to provide a sufficient learning signal to the classifier. The vae model of
Marcheggiani and Titov (2016) introduced in Section 2.5.5 followed this
path by leveraging representation learning for modeling knowledge bases
and proposed to use an auto-encoder model: their encoder extracts the
relation from a sentence that the decoder uses to predict a missing entity.
However, their encoder is still limited compared to its supervised counter-
part (e.g. pcnn) and relies on handcrafted features extracted by natural
language processing tools (Section 2.3.4). These features tend to contain
errors and prevent the discovery of new patterns, which might hinder per-
formances.

While the transition to deep learning approaches can bring more ex-
pressive models to the task, it also raises new problems. This chapter tack-
les a problem specific to unsupervised discriminative relation extraction

https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133


3 Regularizing Discriminative Unsupervised Relation Extraction Models 84

models. In particular, we focus on the vae model of Section 2.5.5. These
models tend to be hard to train because of the way ℋuniform is enforced,
expressly, how we ensure that all relations are conveyed the same amount
of time.48 To tackle this issue, we propose two new regularizing losses on 48 However, this problem can be gen-

eralized to how we enforce all relations
are conveyed reasonably often.

the distribution of relations. With these, we hope to leverage the expres-
sivity of discriminative approaches—in particular, of deep neural network
classifiers—while staying in an unsupervised setting. Indeed, these models
are hard to train without supervision, and the solutions proposed at the
time were unstable. Discriminative approaches have less inductive bias,
but this makes them more sensitive to noise.

Indeed, our initial experiments showed that the vae relation extraction
model was unstable, especially when using a deep neural network relation
classifier. It converges to either of the two following regimes, depending on
hyperparameter settings: always predicting the same relation or predicting
a uniform distribution. To overcome these limitations, we propose to use
two new losses alongside an entity prediction loss based on a fill-in-the-
blank task and show experimentally that this is key to learning deep neural
network models. Our contributions are the following:

• We propose two RelDist losses: a skewness loss, which encourages
the classifier to predict a class with confidence for a single sentence,
and a distribution distance loss, which encourages the classifier to
scatter a set of sentences into different classes;

• We perform extensive experiments on the usual nyt + fb dataset,
as well as two new datasets;

• We show that our RelDist losses allow us to train a deep pcnn
classifier and improve the performances of feature-based models.

In this chapter, we first describe our model in Section 3.1 before revis-
iting the related works pertinent to the experimental setup in Section 3.2.
We present our main experimental results in Section 3.3 before studying
some possible improvements we considered in Section 3.4.

3.1 Model description
Our model focuses on extracting the relation between two entities in tex-
tual data and assumes that an entity chunker has identified named entities
in the text. Furthermore, following Section 2.1, we limit ourselves to bi-
nary relations and therefore consider sentences with two tagged entities,
as shown in Figure 3.1. These sentences constitute the set 𝒮. We further
assume that entity linking was performed and that we have access to entity
identifiers from the set ℰ. We therefore consider samples from a dataset
𝒟 ⊆ 𝒮 × ℰ2. From these samples we learn a relation classifier that maps
each sample 𝑥 ∈ 𝒟 to a relation 𝑟 ∈ ℛ. As such, our approach is sentential
(Section 2.1).

To provide a supervision signal to our relation classifier, we follow the
vae model of Section 2.5.5 (Marcheggiani and Titov 2016). However, the Marcheggiani and Titov, “Discrete-

State Variational Autoencoders for
Joint Discovery and Factorization of
Relations” tacl 2016

interpretation of their model as a vae is part of the limitation we observed
and is in conflict with the modifications we introduce. We, therefore, re-
formulate their approach as a fill-in-the-blank task:

“The sol𝑒1
was the currency of ? 𝑒2

between 1863 and 1985.”

https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
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The sol was the currency of Peru between 1863 and 1985.

prefix infix suffix

head entity tail entity Figure 3.1: A sentence from Wikipedia
where the conveyed relation is “cur-
rency used by.” In contrast to Fig-
ure 2.3, which presented dipre’s split-
in-three-affixes, we do not label the en-
tities surface forms with 𝑒1 and 𝑒2 to
avoid confusion with entity identifiers.To correctly fill in the blank, we could directly learn to predict the missing

entity; but in this case, we would not be able to learn a relation classifier.
Instead, we first want to learn that this sentence expresses the semantic
relation “currency used by” before using this information for a (self-)su-
pervised entity prediction task. To this end, we make the following as-
sumption:

Assumption ℋblankable: The relation can be predicted by the text sur-
rounding the two entities alone. Formally, using blanked(𝑠) to designate
the tagged sentence 𝑠 ∈ 𝒮 from which the entities surface forms were
removed, we can write:
r ⟂⟂ 𝐞 ∣ blanked(s).

Furthermore, since the information between s and blanked(s) is de-
termined by 𝐞, as a corollary of ℋblankable, we have the equivalence
𝑃(r ∣ s) = 𝑃(r ∣ blanked(s)). Using this assumption and the above ob-
servation about filling blanked entities, we design a surrogate fill-in-the-
blank task to train a relation extraction model. This task uses the point of
view that a relation is something that allows us to predict 𝑒2 from 𝑒1 and
vice versa. Our goal is to predict a missing entity 𝑒−𝑖 given the predicted
relation 𝑟 and the other entity 𝑒𝑖: Derivation of Equation 3.1:

𝑃(𝑒−𝑖 ∣ 𝑠, 𝑒𝑖)
First introduce and marginalize the la-
tent relation variable 𝑟 (“sum rule”):

= ∑
𝑟∈ℛ

𝑃(𝑟, 𝑒−𝑖 ∣ 𝑠, 𝑒𝑖)

Apply the definition of conditional
probability (“product rule”):

= ∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠, 𝑒𝑖)𝑃(𝑒−𝑖 ∣ 𝑟, 𝑠, 𝑒𝑖)

Apply the independence ℋblankable as-
sumption on the first term and our def-
inition of a relation on the second:

= ∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠)𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖)

Furthermore, by applying the corollary
of ℋblankable, we can write:

= ∑
𝑟∈ℛ

𝑃(𝑟 ∣ blanked(𝑠))𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖)

𝑃(𝑒−𝑖 ∣ 𝑠, 𝑒𝑖) = ∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠)⏟
(i) classifier

𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖)⏟⏟⏟⏟⏟
(ii) entity predictor

for 𝑖 = 1, 2, (3.1)

where 𝑒1, 𝑒2 ∈ ℰ are the two entities identifiers, 𝑠 ∈ 𝒮 is the sentence
mentioning them, and 𝑟 ∈ ℛ is the relation linking them. As the entity
predictor can consider either entity, we use 𝑒𝑖 to designate the given entity,
and 𝑒−𝑖 = {𝑒1, 𝑒2} ⧵ {𝑒𝑖} the one to predict.

The relation classifier 𝑃(𝑟 ∣ 𝑠) and entity predictor 𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖) are
trained jointly to discover a missing entity, with the constraint that the
entity predictor cannot access the input sentence directly. Thus, all the
required information must be condensed into 𝑟, which acts as a bottleneck.
We advocate that this information is the semantic relation between the
two entities.

Note that Marcheggiani and Titov (2016) did not make the ℋblankable
hypothesis. Instead, their classifier is conditioned on both 𝑒𝑖 and 𝑒−𝑖,
strongly relying on the fact that 𝑟 is an information bottleneck and will
not “leak” the identity of 𝑒−𝑖. This is possible since they use pre-defined
sentence representations; this is impossible to enforce with the learned
representations of a deep neural network.

In the following, we first describe the relation classifier 𝑃(𝑟 ∣ 𝑠) in
Section 3.1.1 before introducing the entity predictor 𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖) in Sec-
tion 3.1.2. Arguing that the resulting model is unstable, we describe the
two new RelDist losses in Section 3.1.3.

3.1.1 Unsupervised Relation Classifier
Our model for 𝑃(𝑟 ∣ 𝑠) follows the then state-of-the-art practices for super-
vised relation extraction by using a piecewise convolutional neural network
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(pcnn, Section 2.3.6, Zeng et al. 2015). Similar to dipre’s split-in-three- Zeng et al., “Distant Supervision
for Relation Extraction via Piece-
wise Convolutional Neural Networks”
emnlp 2015

affixes, the input sentence can be split into three parts separated by the two
entities (see Figure 3.1). In a pcnn, the model outputs a representation for
each part of the sentence. These are then combined to make a prediction.
Figure 2.6 shows the network architecture that we now describe.

First, each word of 𝑠 is mapped to a real-valued vector. In this work,
we use standard word embeddings, initialized with GloVe49 (Section 1.2.1, 49 We use the 6B.50d pre-trained

word embeddings from https://nlp.
stanford.edu/projects/glove/

Pennington et al. 2014), and fine-tune them during training. Based on
those embeddings, a convolutional layer detects patterns in subsequences
of words. Then, a max-pooling along the text length combines all features
into a fixed-size representation. Note that in our architecture, we obtained
better results by using three distinct convolutions, one for each sentence
part (i.e. the weights are not shared). We then apply a non-linear function
(tanh) and sum the three vectors into a single representation for 𝑠. Finally,
this representation is fed to a softmax layer to predict the distribution over
the relations. This distribution can be plugged into Equation 3.1. Denoting
pcnn our classifier, we have:

𝑃(𝑟 ∣ 𝑠) = pcnn(𝑟; 𝑠, 𝝓),

where 𝝓 are the parameters of the classifier. Note that we can use the pcnn
to predict the relationship for any pair of entities appearing in any sentence
since the input will be different for each selected pair (see Figure 2.6).
Furthermore, since the pcnn ignore the entities surface forms, we can have
𝑃(𝑟 ∣ 𝑠) = 𝑃(𝑟 ∣ blanked(𝑠)) which is necessary to enforce ℋblankable.

3.1.2 Entity Predictor
The purpose of the entity predictor is to provide supervision for the rela-
tion classifier. As such, it needs to be differentiable. We follow Marcheg-
giani and Titov (2016) to model 𝑃(𝑒𝑖 ∣ 𝑟, 𝑒−𝑖), and use an energy-based
formalism, where 𝜓(𝑒1, 𝑟, 𝑒2) is the energy associated with (𝑒1, 𝑟, 𝑒2). The
probability is obtained as follows:

𝑃(𝑒1 ∣ 𝑟, 𝑒2) =
exp(𝜓(𝑒1, 𝑟, 𝑒2))

∑𝑒′∈ℰ exp(𝜓(𝑒′, 𝑟, 𝑒2))
, (3.2)

where 𝜓 is expressed as the sum of two standard relational learning models
selectional preferences (Section 1.4.2.1) and rescal (Section 1.4.2.2):

𝜓(𝑒1, 𝑟, 𝑒2; 𝜽) = 𝒖𝖳
𝑒1
𝒂𝑟 + 𝒖𝖳

𝑒2
𝒃𝑟⏟⏟⏟⏟⏟⏟⏟

Selectional Preferences

+𝒖𝖳
𝑒1
𝑪𝑟𝒖𝑒2⏟⏟⏟⏟⏟

rescal

where 𝑼 ∈ ℝℰ×𝑚 is an entity embedding matrix, 𝑨,𝑩 ∈ ℝℛ×𝑚 are two
matrices encoding the preferences of each relation of certain entities, 𝘾 ∈
ℝℛ×𝑚×𝑚 is a three-way tensor encoding the entities interactions, and the
hyperparameter 𝑚 is the dimension of the embedded entities. The function
𝜓 also depends on the energy functions parameters 𝜽 = {𝘼,𝑩,𝑪,𝑼} that
we might omit for legibility. rescal (Nickel et al. 2011) uses a bilinear
tensor product to gauge the compatibility of the two entities; whereas, in
the Selectional Preferences model, only the predisposition of an entity to
appear as the subject or object of a relation is captured.

Negative Sampling The number of entities being very large, the par-
tition function of Equation 3.2 cannot be efficiently computed. To avoid

https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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the summation over the set of entities, we follow Section 1.2.1.3 and use
negative sampling (Mikolov et al. 2013b); instead of training a softmax
classifier, we train a discriminator which tries to recognize real triplets
(D = 1) from fake ones (D = 0):

𝑃(D = 1 ∣ 𝑒1, 𝑒2, 𝑟) = 𝜎 (𝜓(𝑒1, 𝑟, 𝑒2)) ,

where 𝜎(𝑥) = 1∕(1+exp(−𝑥)) is the sigmoid function. This model is then
trained by generating negative entities for each position and optimizing
the negative log-likelihood:

ℒep(𝜽, 𝝓) = 𝔼
(s,e1,e2)∼𝒰(𝒟)

r∼pcnn(s;𝝓)

[ − log𝜎 (𝜓(e1, r, e2; 𝜽) + 𝑏e1
)

− log𝜎 (𝜓(e1, r, e2; 𝜽) + 𝑏e2
)

−
𝑘

∑
𝑗=1

𝔼
e′∼𝒰𝒟(ℰ)

[log𝜎 (−𝜓(e1, r, e′; 𝜽) − 𝑏e′)]

−
𝑘

∑
𝑗=1

𝔼
e′∼𝒰𝒟(ℰ)

[log𝜎 (−𝜓(e′, r, e2; 𝜽) − 𝑏e′)] ]

(3.3)

This loss is defined over the empirical data distribution 𝒰(𝒟), i.e. the
samples (s, e1, e2) follow a uniform distribution over sentences tagged with
two entities; and the empirical entity distribution 𝒰𝒟(ℰ), that is the cat-
egorical distribution over ℰ where each entity is weighted by its frequency
in 𝒟. The distribution of the relation r for the sentence s is then given by
the classifier pcnn(s; 𝝓), which corresponds to the ∑𝑟∈ℛ 𝑃(𝑟 ∣ 𝑠) in Equa-
tion 3.1. Following standard practice, during training, the expectation on
negative entities is approximated by sampling 𝑘 random entities following
the empirical entity distribution ℰ for each position.

Biases Following Marcheggiani and Titov (2016), we add a bias for en-
tities to 𝜓. These biases are parametrized by a single vector 𝒃 ∈ ℝℰ. They
encode how some entities are more likely to appear than others; as such,
the +𝒃𝑒𝑖

appear in ℒep where the 𝑃(𝑒𝑖 ∣ 𝑟, 𝑒−𝑖) would appear in the neg-
ative sampling estimation.

Approximation When |ℛ| is large, the expectation over r ∼ pcnn(s; 𝝓)
can be slow to evaluate. To avoid computing 𝜓 for all possible relation
𝑟 ∈ ℛ, we employ an optimization also used by Marcheggiani and Titov
(2016). This optimization is built upon the following approximation:

𝔼
r∼pcnn(s;𝝓)

[log𝜎(𝜓(e1, r, e2; 𝜽))] ≈ log𝜎( 𝔼
r∼pcnn(s;𝝓)

[𝜓(e1, r, e2; 𝜽)]) . (3.4)

Since the function 𝜓 is linear in 𝑟, we can efficiently compute its expected
value over 𝑟 using the convex combinations of the relation embeddings. For
example we can replace the selectional preference of a relation 𝑟 for a head
entity 𝑒1: 𝒖𝖳

𝑒1
𝒂𝑟 by the selectional preference of a distribution pcnn(𝑠; 𝝓)

for a head entity: 𝒖𝖳
𝑒1
(pcnn(𝑠; 𝝓)𝖳𝑨).
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3.1.3 RelDist losses
Training the classifier through Equation 3.3 alone is very unstable and
dependent on precise hyperparameter tuning. More precisely, according
to our early experiments, the training process usually collapses into one
of two regimes:

Degenerate distributions:

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮

Desired distributions:

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮

Figure 3.2: Illustration of 𝒫 1. The
classifier assigns roughly the same
probability to all relations. Instead, we
would like the classifier to predict a sin-
gle relation confidently.

Degenerate distributions:

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮
average =

Desired distributions:

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮
average =

Figure 3.3: Illustration of 𝒫 2. The
classifier consistently predicts the same
relation. This is clearly visible when
taking the average distribution (by
marginalizing over the sentences s). In-
stead, we would like the classifier to
predict a diverse set of relations.

(𝒫 1) The classifier is very uncertain about which relation is expressed
and outputs a uniform distribution over relations (Figure 3.2);

(𝒫 2) All sentences are classified as conveying the same relation (Fig-
ure 3.3).

In both cases, the entity predictor can do a good job minimizing ℒep
by ignoring the output of the classifier, simply exploiting entities’ co-
occurrences. More precisely, many entities only appear in one relationship
with a single other entity. In this case, the entity predictor can easily ig-
nore the relationship 𝑟 and predict the missing entity—and this pressure is
even worse at the beginning of the optimization process as the classifier’s
output is not yet reliable.

This instability problem is particularly prevalent since the two com-
ponents (classifier and entity predictor) are strongly interdependent: the
classifier cannot be trained without a good entity predictor, which itself
cannot take 𝑟 into account without a good classifier resulting in a boot-
strapping problem. To overcome these pitfalls, we developed two additional
losses, which we now describe.

Skewness. Firstly, to encourage the classifier to be confident in its out-
put, we minimize the entropy of the predicted relation distribution. This
addresses 𝒫 1 by forcing the classifier toward outputting one-hot vectors
for a given sentence using the following loss:

ℒs(𝝓) = 𝔼
(s,𝐞)∼𝒰(𝒟)

[H(R ∣ s, 𝐞; 𝝓)] , (3.5)

where R is the random variable corresponding to the predicted relation.
Following our first independence hypothesis, the entropy of equation 3.5
is equivalent to H(R ∣ s).

Distribution Distance. Secondly, to ensure that the classifier predicts
several relations, we enforce ℋuniform by minimizing the Kullback–Leibler
divergence between the model prior distribution over relations 𝑃(R ∣ 𝝓)
and the uniform distribution50

50 Other distributions could be used,
but in the absence of further informa-
tion, this might be the best thing to
do. See Section 3.5 for a discussion of
alternatives.

over the set of relations 𝒰(ℛ), that is:

ℒd(𝝓) = Dkl(𝑃 (R ∣ 𝝓) ‖ 𝒰(ℛ)). (3.6)

Note that contrary to ℒs, to have a good approximation of 𝑃(R ∣ 𝝓),
the loss ℒd measures the unconditional distribution over R, i.e. the dis-
tribution of predicted relations over all sentences. This addresses 𝒫 2 by
forcing the classifier toward predicting each class equally often over a set
of sentences.

To satisfactorily and jointly train the entity predictor and the classifier,
we use the two losses at the same time, resulting in the final loss:

ℒ(𝜽,𝝓) = ℒep(𝜽, 𝝓) + 𝛼ℒs(𝝓) + 𝛽ℒd(𝝓), (3.7)

where 𝛼 and 𝛽 are both positive hyperparameters.
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All three losses are defined over the real data distribution, but in prac-
tice, they are approximated at the level of a mini-batch. First, both ℒep
and ℒs can be computed for each sample independently. To optimize ℒd
however, we need to estimate 𝑃(R) at the mini-batch level and maximize
the entropy of the mean predicted relation. Formally, let 𝑠𝑖 for 𝑖 = 1,… ,𝐵
be the 𝑖-th sentence in a batch of size 𝐵, we approximate ℒd as:

∑
𝑟∈ℛ

(
𝐵

∑
𝑖=1

pcnn(𝑟; 𝑠𝑖)
𝐵

) log(
𝐵

∑
𝑖=1

pcnn(𝑟; 𝑠𝑖)
𝐵

) .

Learning We optimize the empirical estimation of Equation 3.7, learn-
ing the pcnn parameters and word embeddings 𝝓 as well as the entity
predictor parameters and entity embeddings 𝜽 jointly.

3.2 RelatedWork
The nlp and knowledge base related work is presented in Chapter 1, and
the relation extraction related work is presented in Chapter 2. The main
approaches we built upon are:

• Distant supervision (Section 2.2.2, Mintz et al. 2009): the method
we use to obtain a supervised dataset for evaluation;51 51 As explained in Section 2.5.1.1, this

is sadly standard in the evaluation of
clustering approaches.• pcnn (Section 2.3.6, Zeng et al. 2015): our relation classifier, which

was the state-of-the-art supervised relation extraction method at the
time;

• Rel-lda (Section 2.5.4, Yao et al. 2011): the state-of-the-art gener-
ative model we compare to;

• vae for relation extraction (Section 2.5.5, Marcheggiani and Titov
2016): the overall inspiration for the architecture of our model, with
which we share the entity predictor;

• Selfore (Section 2.5.7, X. Hu et al. 2020): an extension of our work,
which, alongside their own approach, proposed an improvement of
our relation classifier by replacing the pcnn by a bertcoder.

In this section, we give further details about the relationship between
our losses and the ones derived by Marcheggiani and Titov (2016). As a
reminder, their model is a vae defined from an encoder 𝑄(𝑟 ∣ 𝒆, 𝑠; 𝝓) and
a decoder 𝑃(𝒆 ∣ 𝑟, 𝑠; 𝜽) as: The prior of a conditional vae 𝑃(𝑟 ∣

𝜽) is usually conditioned on 𝑠 too.
However, this additional variable is
not used by Marcheggiani and Titov
(2016).

ℒvae(𝜽, 𝝓) = 𝔼
𝑄(𝑟∣𝒆,𝑠;𝝓)

[− log𝑃(𝒆 ∣ 𝑟, 𝑠; 𝜽)] + 𝛽Dkl(𝑄(𝑟 ∣ 𝒆, 𝑠; 𝝓) ‖ 𝑃 (𝑟 ∣ 𝜽))
(3.8)

This is simply a rewriting of the elbo of Equation 2.8 substituting relation
extraction variables to the generic ones. There is however two differences
compared to a standard vae. First, the variable 𝑠 is not reconstructed,
it simply conditions the whole process. Second, the regularization term is
weighted by a hyperparameter 𝛽. This makes the model of Marcheggiani
and Titov (2016) a conditional 𝛽-vae (Higgins et al. 2017; Sohn et al.
2015)

Higgins et al., “𝛽-vae: Learning Ba-
sic Visual Concepts with a Constrained
Variational Framework” iclr 2017
Sohn et al., “Learning Structured Out-
put Representation using Deep Con-
ditional Generative Models” neurips
2015

. The first summand of Equation 3.8 is called the reconstruction loss
since it reconstructs the input variable 𝒆 from the latent variable 𝑟 and
the conditional variable 𝑠. Since we followed the same structure for our

https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf


3 Regularizing Discriminative Unsupervised Relation Extraction Models 90

model, this reconstruction loss is actually ℒep, the difference being in the
relation classifier. We can then rewrite the loss of Marcheggiani and Titov
(2016) as: As explained Section 2.5.5, 𝑄 is the

vae’s encoder.
ℒvae(𝜽, 𝝓) = ℒep(𝜽, 𝝓) + 𝛽ℒvae reg(𝜽, 𝝓)

ℒvae reg(𝜽, 𝝓) = Dkl(𝑄(r ∣ 𝐞; 𝝓) ‖ 𝑃 (r ∣ 𝜽))

In their work, they select the prior as a uniform distribution over all rela-
tions 𝑃(r ∣ 𝜽) = 𝒰(ℛ) and approximate ℒvae reg as follow:

ℒvae reg(𝝓) = 𝔼
(s,𝐞)∼𝒰(𝒟)

[−H(R ∣ s, 𝐞; 𝝓)]

Its purpose is to prevent the classifier from always predicting the same
relation, i.e. it has the same purpose as our distance loss ℒd. However, its
expression is equivalent to −ℒs, and indeed, minimizing the opposite of our
skewness loss increases the entropy of the classifier output, addressing 𝒫 2
(classifier always outputting the same relation). Yet, using ℒvae reg = −ℒs
alone, draws the classifier into the other pitfall 𝒫 1 (not predicting any
relation confidently). In a traditional vae, 𝒫 1 is addressed by the recon-
struction loss ℒep. However, at the beginning of training, the supervision
signal is so weak that we cannot rely on ℒep for our task. The 𝛽 weighting
can be decreased to avoid 𝒫 1, but this would also lessen the solution to
𝒫 2. This causes a drop in performance, as we show experimentally.

3.3 Experiments
To compare with previous works, we repeat the experimental setup of
Marcheggiani and Titov (2016) with the B3 evaluation metric (Bagga
and Baldwin 1998). We complemented this setup with two additional
datasets extracted from t-rex (Elsahar et al. 2018) and two more metrics
commonly seen in clustering task evaluation: V-measure (Rosenberg and
Hirschberg 2007) and ari (Hubert and Arabie 1985). This allows us to
capture the characteristics of each approach in more detail.

In this section, we begin by describing the processing of the datasets
in Section 3.3.1. We then describe the experimental details of the models
we evaluated in Section 3.3.2. Finally, we give quantitative results in Sec-
tion 3.3.3 and qualitative results in Section 3.3.4 The description of the
metrics can be found in Section 2.5.1.1. Appendix C gives further details
on the source datasets, their specificities, their sizes and some example of
their content when appropriate.

3.3.1 Datasets
As explained in Section 2.5.1, to evaluate the models, we use labeled
datasets, the labels being used for validation and testing. The first dataset
we consider is the one of Marcheggiani and Titov (2016), which is similar
to the one used in Yao et al. (2011). This dataset was built through distant
supervision (Section 2.2.2) by aligning sentences from the New York Times
corpus (nyt, Section C.5, Sandhaus 2008) with Freebase (fb, Section C.3,
Bollacker et al. 2008) facts. Several sentences were filtered out based on
features like the length of the dependency path between the two entities,
resulting in 2 million sentences with only 41 000 (2%) of them labeled with
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one of 262 possible relations. 20% of the labeled sentences were set aside
for validation; the remaining 80% are used to compute the final results.

We also extracted two datasets from t-rex (Section C.7, Elsahar et
al. 2018), which was built as an alignment of Wikipedia with Wikidata
(Section C.8, Vrandečić and Krötzsch 2014). We only consider (𝑠, 𝑒1, 𝑒2)
triplets where both entities appear in the same sentence.52 If a single sen- 52 t-rex provides annotations for

whole articles; it should therefore be
possible to process broader contexts by
defining 𝒮 as a set of articles. How-
ever, in this work, we stay in the tra-
ditional sentence-level relation extrac-
tion setup.

tence contains multiple triplets, it appears multiple times in the dataset,
each time with a different pair of tagged entities. We built the first dataset
ds by extracting all triplets of t-rex where the two entities are linked by
a relation in Wikidata. This is the usual distant supervision method. It re-
sults in 1 189 relations and nearly 12 million sentences, all of them labeled
with a relation.

In Wikidata, each relation is annotated with a list of associated surface
forms; for example, “shares border with” can be conveyed by “borders,”
“adjacent to,” “next to,” etc. The second dataset we built, spo, only con-
tains the sentences where a surface form of the relation also appears in
the sentence, resulting in 763 000 samples (6% of the unfiltered dataset)
and 615 relations. This dataset still contains some misalignment, but it
should nevertheless be easier for models to extract the correct semantic
relation since the set of surface forms is much more restricted and much
more regular.

3.3.2 Baselines andModels
We compare our model with three state-of-the-art approaches, two gener-
ative rel-lda models of Yao et al. (2011), the vae model of Marcheggiani
and Titov (2016) and the deep clustering of bert representations by X.
Hu et al. (2020).

The two rel-lda models only differ by the number of features consid-
ered. We use the eight features listed in Marcheggiani and Titov (2016):

1. the bag of words of the infix;

2. the surface form of the entities;

3. the lemma words on the dependency path;

4. the pos of the infix words;

5. the type of the entity pair (e.g. person–location);

6. the type of the head entity (e.g. person);

7. the type of the tail entity (e.g. location);

8. the words on the dependency path between the two entities.

Rel-lda uses the first three features, while rel-lda1 is trained by iteratively
adding more features until all eight are used.

To assess our two main contributions individually, we evaluate the
pcnn classifier and our additional losses separately. More precisely, we first
study the effect of the RelDist losses by looking at the differences between
models optimizing ℒep +ℒvae reg and the ones optimizing ℒep +ℒs +ℒd
with ℒep being either computed using the relation classifier of Marcheg-
giani and Titov (2016) or our pcnn. Second, we study the effect of the
relation classifier by comparing the feature-based classifier and the pcnn
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trained with the same losses. We also give results for our RelDist losses
together with a bertcoder classifier. This latter combination is evaluated
by X. Hu et al. (2020) following our experimental setup. We thus focus
mainly on four models:

• Linear + ℒvae reg, which corresponds to the model of Marcheggiani
and Titov (2016);

• Linear + ℒs + ℒd, which uses the feature-based linear encoder of
Marcheggiani and Titov (2016) together with our RelDist losses;

• pcnn + ℒvae reg, which uses our pcnn encoder together with the
regularization of Marcheggiani and Titov (2016);

• pcnn +ℒs +ℒd, which is our complete model.

All models are trained with ten relation classes, which, while lower than
the number of actual relations, allows us to compare the models faithfully
since the distribution of gold relations is very unbalanced. For feature-
based models, the size of the features domain range from 1 to 10 million
values depending on the dataset. We train our models with Adam using 𝐿2
regularization on all parameters. To have a good estimation of 𝑃(R) in the
computation of ℒd, we use a batch size of 100. Our word embeddings are
of size 50, entities embeddings of size 𝑚 = 10. We sample 𝑘 = 5 negative
samples to estimate ℒep. Lastly, we set 𝛼 = 0.01 and 𝛽 = 0.02. All three
datasets come with a validation set, and following Marcheggiani and Titov
(2016), we used it for cross-validation to optimize the B3 𝐹1.

3.3.3 Results
The results reported in Table 3.1 are the average test scores of three runs
on the nyt + fb and t-rex spo datasets, using different random initial-
ization of the parameters—in practice, the variance was low enough so
that reported results can be analyzed. We observe that regardless of the
model and metrics, the highest measures are obtained on t-rex spo, then
nyt + fb and finally t-rex ds. This was to be expected since t-rex spo
was built to be easy, while hard-to-process sentences were filtered out of
nyt+fb (Marcheggiani and Titov 2016; Yao et al. 2011). We also observe
that the main metrics agree in general (B3, V-measure and ari) in most
cases. Performing a pca on the measures, we observed that V-measure
forms a nearly-orthogonal axis to B3, and to a lesser extent ari. Hence we
can focus on B3 and V-measure in our analysis.

We first measure the benefit of our RelDist losses: on all datasets and
metrics, the two models using ℒs +ℒd are systematically better than the
ones using ℒvae reg:

• The pcnn models consistently gain between 7 and 11 points in B3

𝐹1 from these additional losses;

• The feature-based linear classifier benefits from the RelDist losses to
a lesser extent, except on the t-rex ds dataset on which the Linear+
ℒvae reg model without the RelDist losses completely collapses—we
hypothesize that this dataset is too hard for the model given the
number of parameters to estimate.
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Dataset Model B3 V-measure ari
Classifier Reg. 𝐹1 Prec. Rec. 𝐹1 Hom. Comp.

nyt + fb

rel-lda 29.1 24.8 35.2 30.0 26.1 35.1 13.3
rel-lda1 36.9 30.4 47.0 37.4 31.9 45.1 24.2
Linear ℒvae reg 35.2 23.8 67.1 27.0 18.6 49.6 18.7
pcnn ℒvae reg 27.6 24.3 31.9 24.7 21.2 29.6 15.7
Linear ℒs +ℒd 37.5 31.1 47.4 38.7 32.6 47.8 27.6
pcnn ℒs +ℒd 39.4 32.2 50.7 38.3 32.2 47.2 33.8

bertcoder† ℒs +ℒd 41.5 34.6 51.8 39.9 33.9 48.5 35.1
bertcoder† Selfore† 49.1 47.3 51.1 46.6 45.7 47.6 40.3

t-rex spo

rel-lda 11.9 10.2 14.1 5.9 4.9 7.4 3.9
rel-lda1 18.5 14.3 26.1 19.4 16.1 24.5 8.6
Linear ℒvae reg 24.8 20.6 31.3 23.6 19.1 30.6 12.6
pcnn ℒvae reg 25.3 19.2 37.0 23.1 18.1 31.9 10.8
Linear ℒs +ℒd 29.5 22.7 42.0 34.8 28.4 45.1 20.3
pcnn ℒs +ℒd 36.3 28.4 50.3 41.4 33.7 53.6 21.3

bertcoder† ℒs +ℒd 38.1 30.7 50.3 39.1 37.6 40.8 23.5
bertcoder† Selfore† 41.0 39.4 42.8 41.4 40.3 42.5 33.7

t-rex ds

rel-lda 9.7 6.8 17.0 8.3 6.6 11.4 2.2
rel-lda1 12.7 8.3 26.6 17.0 13.3 23.5 3.4
Linear ℒvae reg 9.0 6.4 15.5 5.7 4.5 7.9 1.9
pcnn ℒvae reg 12.2 8.6 21.1 12.9 10.1 18.0 2.9
Linear ℒs +ℒd 19.5 13.3 36.7 30.6 24.1 42.1 11.5
pcnn ℒs +ℒd 19.7 14.0 33.4 26.6 20.8 36.8 9.4

bertcoder† ℒs +ℒd 22.4 17.6 30.8 31.2 26.3 38.3 12.3
bertcoder† Selfore† 32.9 29.7 36.8 32.4 30.1 35.1 20.1

Table 3.1: Results (percentage) on our
three datasets. The results for rel-lda,
rel-lda1, Linear and pcnn are our
own, while results for bertcoder and
Selfore, marked with †, are from X.
Hu et al. (2020). The best results at
the time of publication of our article
are in bold, while the best results at
the time of writing are in italic.

We now restrict to discriminative models based on ℒs + ℒd. We note
that both relation classifier (Linear and pcnn) exhibit better performances
than generative ones (rel-lda, rel-lda1) with a difference ranging from
2.5/0.6 (nyt+fb, for Linear/pcnn) to 11/17.8 (on t-rex spo). However,
the advantage of pcnns over feature-based classifiers is not completely
clear. While the pcnn version has a systematically better B3 𝐹1 on all
datasets (differences of 1.9/6.8/0.2 respectively for nyt+fb/t-rex spo/t-
rex ds), the V-measure decreases by 0.4/4.0 on respectively nyt+ fb/t-
rex ds, and ari by 2.1 on t-rex ds. As B3 𝐹1 was used for validation,
this shows that the pcnn models overfit this metric by polluting relatively
clean clusters with unrelated sentences or degrades well clustered gold
relations by splitting them into two clusters.

The bertcoder classifier improves all metrics consistently, with the
sole exception of the V-measure on the t-rex spo dataset. This can be
explained both by the larger expressive power of bert and by its pretrain-
ing as a language model. The Selfore model, which is built on top of a
bertcoder further improves the results on all datasets. Since these results
are from a subsequent work (X. Hu et al. 2020), we won’t delve too much
into details. As mentioned in Section 2.5.7, Selfore is an iterative algo-
rithm; the ℋuniform assumption is enforced on the whole dataset at once,
thus solving 𝒫 2. While to solve 𝒫 1, Selfore uses a concentration objec-
tive (through the square in the target distribution 𝑷 in Equation 2.11).
While the bertcoder can replace our pcnn classifier and can be evaluated



3 Regularizing Discriminative Unsupervised Relation Extraction Models 94

0 1 2 3 4 5 6 7 8 9

Rel-lda1

0 1 2 3 4 5 6 7 8 9

Linear +ℒvae reg

0 1 2 3 4 5 6 7 8 9

Linear +ℒs +ℒd

0 1 2 3 4 5 6 7 8 9

pcnn +ℒs +ℒd

16.36% 𝑒1 located in 𝑒2(P131)
15.04% 𝑒1 instance of 𝑒2(P31)

9.62% 𝑒1 in country 𝑒2(P17)
7.37% 𝑒2 instance of 𝑒1(P31)
4.47% 𝑒1 shares border 𝑒2(P47)
4.46% 𝑒2 shares border 𝑒1(P47)
4.42% 𝑒2 located in 𝑒1(P131)
3.56% 𝑒2 in country 𝑒1(P17)
2.68% 𝑒1 cast member of 𝑒2(P161)
1.59% 𝑒2 capital of 𝑒1(P36)
1.40% 𝑒1 director of 𝑒2(P57)
1.22% 𝑒1 has child 𝑒2(P40)
1.05% 𝑒2 has child 𝑒1(P40)
0.93% 𝑒1 member of 𝑒2(P54)
0.87% 𝑒1 capital of 𝑒2(P36)

Figure 3.4: Normalized confusion ma-
trices for the t-rex spo dataset. For
each model, each of the 10 columns cor-
responds to a predicted relation clus-
ter, which were sorted to ease compar-
ison. The rows identify Wikidata rela-
tions sorted by their frequency in the
t-rex spo corpus (reported as percent-
age in front of each relation name). The
area of each circle is proportional to
the number of sentences in the cell. For
clarity, the matrix was normalized so
that each row sum to 1, thus it is more
akin to a B3 per-item recall than a true
confusion matrix.

with our regularization losses, the Selfore algorithm is a replacement for
the ℒep + ℒs + ℒd and can’t be use jointly with ℒs + ℒd. In theory, the
Selfore algorithm could be used with a linear or pcnn encoder. How-
ever, Selfore strongly relies on a good initial representation; such a model
would need to be pre-trained as a language model beforehand.

3.3.4 Qualitative Analysis
Since, for our model of interest, all the metrics agree on the t-rex spo
dataset, we plot the confusion matrix of our models in Figure 3.4. Each
row is labeled with the gold Wikidata relation extracted through distant
supervision. For example, the top left cell of each matrix correspond to
the value 𝑃(𝑐(X) = 0 ∣ 𝑔(X) = “𝑒1 located in 𝑒2”) using the notation of
Section 2.5.1. Since relations are generally not symmetric, each Wikidata
relation appears twice in the table, once for each disposition of the entities
in the sentence. This is particularly problematic with symmetric relations
such as “shares border,” which are two different gold relations that actually
convey the same semantic relation.

To interpret Figure 3.4, we have to see whether a predicted cluster
(column) contains different gold relations—paying attention to the fact
that the most important gold relations are listed in the top rows (the top
5 relations account for 50% of sentences). The first thing to notice is that
the confusion matrix of both models using our RelDist losses (ℒs+ℒd) are
sparser (for each column), which means that our models better separate
relations from each other. We observe that Linear + ℒvae reg (the model
of the model of Marcheggiani and Titov 2016) is affected by the pitfall
𝒫 1 (uniform distribution) for many gold clusters. The ℒvae reg loss forces
the classifier to be uncertain about which relation is expressed, translat-
ing into a dense confusion matrix and resulting in poor performances. The
rel-lda1 model is even worse and fails to identify clear clusters, show-
ing the limitations of a purely generative approach that might focus on
features not linked with any relation.

Focusing on our proposed model, pcnn+ℒs+ℒd (rightmost figure), we
looked at two different mistakes. The first is a gold cluster divided in two
(low recall). When looking at clusters 0 and 1, we did not find any recogniz-
able pattern. Moreover, the corresponding entity predictor parameters are
very similar. This seems to be a limitation of the distance loss: splitting a
large cluster in two may improve ℒd but worsen all the evaluation metrics.

https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P47
https://www.wikidata.org/wiki/Property:P47
https://www.wikidata.org/wiki/Property:P131
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P161
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Property:P57
https://www.wikidata.org/wiki/Property:P40
https://www.wikidata.org/wiki/Property:P40
https://www.wikidata.org/wiki/Property:P54
https://www.wikidata.org/wiki/Property:P36
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The model is then penalized by the fact that it lost one slot to transmit
information between the classifier and the entity predictor. The second
type of mistake is when a predicted cluster corresponds to two gold ones
(low precision). Here, most of the mistakes seem understandable: “shares
border” is symmetric (cluster 7), “located in” and “in country” (cluster 8)
or “cast member” and “director of” (cluster 9) are clearly related. Note
that other variants are also affected similarly, showing that the problem
of granularity is complex.

3.4 Alternative Models
In this section, we present some variations we considered during the devel-
opment of our model. However, we did not manage to obtain satisfactory
results with these variants. When possible, we provide an analysis of why
we think these variants did not work; keeping in mind that negative re-
sults are difficult to certify, poor results might be improved with a better
hyperparameter search.

lstm Relation Classifier Instead of a pcnn, we tried using a deep
lstm (Section 1.3.2.1) for our relation classifier. We never managed to
obtain any results with them; the training always collapsed into one of
𝒫 1 or 𝒫 2. An lstm is quite a lot harder to train than a cnn. The repre-
sentation provided by an lstm is the result of several non-linear operator
compositions, through which it is hard to backpropagate information. On
the other hand, with good initialization, the representation extracted by
a cnn can be close to its input embeddings (which are pre-trained). Since
the training of the entity predictor heavily depends on the relation classi-
fier, it is not surprising that the training fails with an lstm. The failure of
the lstm to provide a good representation at the beginning of the train-
ing procedure pushes the entity predictor to ignore the relation variable 𝑟,
which therefore does not receive any gradient and thus does not provide
any supervision back to the lstm. Retrospectively, pre-training the sen-
tence representation extractor with a language modeling loss could have
overcome this problem. The initial representation would have been good
enough for the entity predictor to provide some gradient back to the rela-
tion classifier. This is confirmed by the work of X. Hu et al. (2020), who
trained a bert relation classifier with our losses. In the end, what made a
pcnn work is its shallowness and the pre-trained GloVe word embeddings.

Gumbel–Softmax Another approach to tackling 𝒫 1 (uniform out-
put) would be to use a discrete distribution for the relation 𝑟; instead
of marginalizing over all possible relations in Equation 3.3, we would only
take the most likely relation. However, taking the maximum would not be
differentiable. The Gumbel–softmax technique provides a solution to this
problem. Let’s call 𝑦𝑟 ∈ ℝ for 𝑟 ∈ ℛ the unnormalized score assigned to
each relation by the pcnn. It can be shown (Gumbel 1954) that sampling
from softmax(𝒚) is equivalent to taking argmax𝑟∈ℛ 𝑦𝑟 +G𝑟 where G𝑟 are
randomly sampled from the Gumbel distribution. Knowing this, Jang et
al. (2016) propose to use the following Gumbel–Softmax distribution: Jang et al., “Categorical reparame-

terization with gumbel–softmax” iclr
2016

𝜋𝑟 =
(exp(𝑦𝑟) + G𝑟) ∕ 𝜏

∑𝑟′∈ℛ(exp(𝑦𝑟′) + G𝑟′) ∕ 𝜏

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
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𝒫 1 solution B3 V-measure ari
𝐹1 Prec. Rec. 𝐹1 Hom. Comp.

ℒs regularization 39.4 32.2 50.7 38.3 32.2 47.2 33.8
Gumbel–Softmax 35.0 29.9 42.2 33.2 28.3 40.2 25.1

Table 3.2: Quantitative results of the
Gumbel–Softmax model on the nyt +
fb dataset. The ℒs solution is used to-
gether with ℒd and a softmax activa-
tion, while the Gumbel–Softmax acti-
vation is used with ℒd only. Therefore,
the first row reports the same results
present in Table 3.1.

This distribution has the advantage of being differentiable, barring the
Gumbel variables G𝑟. Furthermore, when the temperature 𝜏 > 0 is close
to 1, this distribution looks like a standard softmax output. On the other
hand, when the temperature is close to 0, this distribution is closer to
a one-hot vector with low entropy. Decreasing the temperature gradually
throughout the training process, this should help us solve 𝒫 1.

Following a grid search, we initially set 𝜏 = 1 with an annealing rate
of 0.9 per epoch. Table 3.2 compares the best Gumbel–Softmax results of
ℒep+ℒd with the standard softmax result of ℒep+ℒs+ℒd discussed above.
We do not use ℒs with Gumbel–Softmax since both mechanisms seek to
address 𝒫 1. While the Gumbel–Softmax prevents the model from falling
entirely into 𝒫 1, it still underperforms compared to the ℒs regularization
of our standard model.

Aligning Sentences and Entity Pairs Another model we attempted
to train purposes to align sentences and entities. It recombines our pcnn
relation classifier with the energy function 𝜓 into a new layout following a
relaxation of the ℋpullback assumption.53 In this model, we obtain a dis- 53 This hypothesis introduced Sec-

tion 2.2.1 assumes that the relation can
be found from the entities alone, and
from the relations alone.

tribution over the relations 𝑃(r𝑠 ∣ blanked(𝑠)) using a pcnn as described
Section 3.1.1, but we also extract a distribution 𝑃(r𝑒 ∣ 𝒆) using the energy
function 𝜓 normalized over the relations 𝑃(𝑟𝑒 ∣ 𝑒1, 𝑒2) ∝ exp(𝜓(𝑒1, 𝑟𝑒, 𝑒2)).
This model clearly assumes ℋpullback since it extracts a relation from the
entities and from the sentence separately. However, in contrast to other
models assuming ℋpullback (such as dipre, Section 2.3.2), we combine the
separate relations into a single one to express the fact that a relation is
both conveyed by the sentence and the entities:

𝑃(r = 𝑟 ∣ 𝑠, 𝒆; 𝜽, 𝝓) = 𝑃(r𝑠 = 𝑟 ∣ 𝑠; 𝝓)𝑃(r𝑒 = 𝑟 ∣ 𝒆; 𝜽) (3.9)

For the final prediction r, the assumption ℋpullback is not made, since it
depends both on the sentence and entities. However, Equation 3.9 clearly
assumes that r𝑠 and r𝑒 are independent and r does not capture any inter-
action between 𝑠 and 𝒆. To train this model, we force the two distributions
to align by maximizing:

For numerical stability, the first term
of Equation 3.10 needs to be computed
as:

− log ∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠, 𝒆; 𝜽, 𝝓) =

− log ∑
𝑟∈ℛ

exp(𝑦(𝑠)
𝑟 + 𝑦(𝑠)

𝑒 )

+ log ∑
𝑟∈ℛ

exp(𝑦(𝑠)
𝑟 )

+ log ∑
𝑟∈ℛ

exp(𝑦(𝑒)
𝑟 )

where 𝒚(𝑠) and 𝒚(𝑒) are the logits used
for predicting r𝑠 and r𝑒 respectively.

We also attempted (without success)
to align the two distribution by mini-
mizing Djsd(r𝑠 ‖ r𝑒). Where Djsd is the
Jensen–Shannon divergence defined as:

Djsd(r𝑠 ‖ r𝑒) = 1
2

( Dkl(r𝑠 ‖ m)

+ Dkl(r𝑒 ‖ m))

with 𝑃(m) = 1
2

(𝑃(r𝑠) + 𝑃(r𝑒)).

ℒalign(𝜽, 𝝓) = − log∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠, 𝒆; 𝜽, 𝝓) + ℒd(𝜽) + ℒd(𝝓). (3.10)

Here ℒs is not needed since, in order to maximize the pointwise product
of two probability mass functions, each distribution must be deterministic
on a matching relation, which solves 𝒫 1.

Table 3.3 gives the results on the nyt + fb datasets and compares
them to the fill-in-the-blank model of Section 3.1. The main problem we
have with this model is its lack of stability. The average, maximum and
minimum given in Table 3.3 are computed over eight runs. Similar results
were observed with slightly different setups such as enforcing ℒd on the
product (r) instead of each distribution separately (r𝑠 and r𝑒). As we
can see, the alignment model sometimes reaches excellent performances
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Model B3 V-measure ari
𝐹1 Prec. Rec. 𝐹1 Hom. Comp.

ℒep +ℒs +ℒd 39.4 32.2 50.7 38.3 32.2 47.2 33.8
ℒalign average 37.6 30.3 49.7 39.4 33.1 48.8 20.3

ℒalign maximum 41.2 33.6 53.4 43.5 36.9 53.1 29.5
ℒalign minimum 34.5 26.5 49.3 35.9 29.6 45.7 15.3

Table 3.3: Quantitative results of the
alignment model on the nyt + fb
dataset. The first row reports the same
results present in Table 3.1. Eight
alignment models were trained, the av-
erage scores are given in the second
row, while the third and fourth rows re-
port the best and worst model among
the eight.

relative to the fill-in-the-blank model. However, this happens rarely, and
on average, it performs more poorly according to the B3 and ari metrics.
Its good V-measures scores are nevertheless encouraging.

3.5 Conclusion
In this chapter, we show that discriminative relation extraction models
can be trained efficiently on unlabeled datasets. Unsupervised relation
extraction models tend to produce impure clusters by enforcing a unifor-
mity constrain at the level of a single sample. We proposed two losses
(named RelDist) to effectively train expressive relation extraction models
by enforcing the distribution over relations to be uniform—note that other
target distributions could be used. In particular, we were able to success-
fully train a deep neural network classifier that only performed well in a
supervised setting so far. We demonstrated the effectiveness of our RelDist
losses on three datasets and showcased its effect on cluster purity.

While forcing a uniform distribution with the distance loss ℒd might
be meaningful with a low number of predicted clusters, it might not gen-
eralize to larger numbers of relations. Preliminary experiments seem to
indicate that this can be addressed by replacing the uniform distribution
in Equation 3.6 with the empirical distribution of the relations in the val-
idation set or any other appropriate law if no validation set is available.54 54 In practice, Zipf’s law (described in

the margin of Section 2.5.2) seems to
fit the observed empirical distribution
quite well.

This would allow us to avoid the ℋuniform assumption.
All models presented in this chapter make extensive independence as-

sumptions. As inferred in Section 3.4 and shown in subsequent work (X.
Hu et al. 2020; Soares et al. 2019), this could be solved with sentence rep-
resentations pre-trained with a language modeling task. Furthermore, the
fill-in-the-blank model is inherently sentence-level. In the next chapter, we
study how to build an unsupervised aggregate relation extraction model
using a pre-trained bertcoder.



3 Regularizing Discriminative Unsupervised Relation Extraction Models 98



99

Chapter 4

Graph-Based Aggregate Modeling

“C’est même des hypothèses sim-
ples qu’il faut le plus se défier, parce
que ce sont celles qui ont le plus de
chances de passer inaperçues.

“ It is the simple hypotheses of
which one must be most wary; because
these are the ones that have the most
chances of passing unnoticed.

— Henri Poincaré, Thermodyna-
mique (1908)

“ In an extreme view, the world can
be seen as only connections, nothing
else. We think of a dictionary as the
repository of meaning, but it defines
words only in terms of other words.
I liked the idea that a piece of infor-
mation is really defined only by what
it’s related to, and how it’s related.
There really is little else to meaning.
The structure is everything.

— Tim Berners-Lee, Weaving the
Web: The original design and
ultimate destiny of the World
Wide Web by its inventor
(1999)

As we showcase in the last chapter, the relational semantics we are trying
to model is challenging to capture in an unsupervised fashion. The infor-
mation available in each sentence is scarce. To alleviate this problem, we
can take a holistic approach by explicitly modeling the relational informa-
tion at the dataset level, similarly to the aggregate approaches discussed
in Section 2.4. The information encoded in the structure of the dataset can
be modeled using a graph (Qian et al. 2019). In this chapter, we propose a

Qian et al., “Graphie: A Graph-Based
Framework for Information Extrac-
tion” 2019

graph-based unsupervised aggregate relation extraction method to exploit
the signal in the dataset structure explicitly.

Since we model dataset-level information, we need to place ourselves
in the aggregate setup (Section 2.1) as defined by Equation 2.2. As a re-
minder, the aggregate setup is in opposition to the sentential setup used
in the previous chapter. In the sentential setup, we process sentences in-
dependently. In contrast, in the aggregate setup, we consider all the sam-
ples 𝒟 ⊆ 𝒮 × ℰ jointly to extract knowledge base facts 𝒟kb ⊆ ℰ × ℛ,
without necessarily mapping each individual sample to a fact. We already
introduced two aggregate supervised relation extraction approaches re-
lying on graph modeling, label propagation (Section 2.4.1) and epgnn
(Section 2.4.5). The latter uses a spectral graph convolutional network
(gcn). gcns are the main contribution coming from a recent resurgence
of interest in graph-based approaches through the use of deep learning
methods. It has been shown that these methods share some similarities
with the Weisfeiler–Leman isomorphism test (Kipf and Welling 2017). A

Kipf and Welling, “Semi-Supervised
Classification with Graph Convolu-
tional Networks” iclr 2017

graph isomorphism test attempts to decide whether two graphs are identi-
cal. To this end, it assigns a color to each element, classifying it according
to its neighborhood. Coupled with the assumption that sentences convey-
ing similar relations have similar neighborhoods, this closely relates the
isomorphism problem to unsupervised relation extraction. However, unsu-
pervised gcns are usually trained by assuming that neighboring samples
have similar representations, completely discarding the characteristic of
the Weisfeiler–Leman algorithm that makes it interesting from a relation
extraction point of view. In this chapter, we propose alternative training
objectives of unsupervised graph neural networks for relation extraction.

In Section 4.1, we see how to extend the definition of a simple graph to
model a relation extraction problem. We then provide some statistics on
the t-rex dataset in Section 4.2. The results support that large amount
of information can be leveraged from topological features for the relation
extraction problem. In Section 4.3, we take a quick tour of graph neural

https://aclanthology.org/N19-1082
https://aclanthology.org/N19-1082
https://aclanthology.org/N19-1082
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
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networks (gnn) and the Weisfeiler–Leman isomorphism test. Most gnns
apply to simple undirected graphs, whereas we need a more complex struc-
ture to encode the relation extraction task. While most models, such as
epgnn, try to adapt the encoding of relation extraction to simple undi-
rected graphs, in Section 4.4, we propose to adapt existing gnn methods
to the richer structure needed to fully capture the relation extraction prob-
lem. Finally, Section 4.5 presents the experimental results of the proposed
approaches.

Notations used in this chapter. A simple undirected graph is defined
as a tuple 𝐺 = (𝑉 ,𝐸) where 𝑉 is a set of 𝑛 vertices and 𝐸 is a set of 𝑚
edges.55 An edge {𝑢, 𝑣} ∈ 𝐸 connects two vertices 𝑢, 𝑣 ∈ 𝑉, which are then 55 In a simple graph, we always have

𝑚 ≤ 𝑛(𝑛 − 1) which tightens to 𝑚 ≤
𝑛(𝑛 − 1) ∕ 2 for undirected ones.

said to be neighbors. We use 𝑁 ∶ 𝑉 → 2𝑉 to denote the function which
associates to each vertex the set of its neighbors 𝑁(𝑢) = {𝑣 ∈ 𝑉 ∣ ∃{𝑢, 𝑣} ∈
𝐸}. Alternatively, a graph 𝐺 can be represented by its adjacency matrix
𝑴 ∈ {0, 1}𝑛×𝑛, with 𝑚𝑢𝑣 = 1 if {𝑢, 𝑣} ∈ 𝐸 and 𝑚𝑢𝑣 = 0 otherwise.
A graph is said to encode an adjacency relation on its vertices, which
foreshadows the remainder of this chapter.

4.1 Encoding Relation Extraction as a Graph
Problem

In this section, we describe how to frame the relation extraction problem
as a problem on graphs. In particular, we describe the structure of an
attributed multigraph which is a generalization of the simple undirected
graph defined in the previous paragraph. This structure is needed to model
entities linked by multiple relations or sentences since this can’t readily
be done with a simple graph. The distinction between 𝐸 and ℰ is im-

portant. We decided to keep the usual
𝐺 = (𝑉 , 𝐸) notation for undirected
graphs. However, the multigraph we
describe in this section has the set of
entities ℰ as vertices. This set ℰ takes
the place of 𝑉; despite the similar no-
tation, it has nothing to do with 𝐸.

Since a knowledge base relation can be formally defined as a set of
entity pairs (Section 1.4.1), we can represent it using a single graph 𝐺 =
(𝑉 ,𝐸) where 𝑉 is the set of entities (𝑉 = ℰ) and 𝐸 is the set of pairs linked
by the relation (𝐸 ∈ ℛ). However, to encode the relation extraction task on
a graph, we need different kinds of edges. We, therefore, use the structure
of an attributed56 multigraph 𝐺 = (ℰ,𝒜, 𝜺, 𝜌, 𝜍) where:57

56 The term “labeled” is usually re-
served for graphs where the domain of
attributes is discrete and finite. How-
ever the set of possible sentences 𝒮 is
not (theoretically) finite.
57 To be perfectly formal, 𝐺 should
also depend on 𝒮 and ℛ, the co-
domains of 𝜍 and 𝜌. We omit them for
conciseness.

• ℰ is the set of entities, which corresponds to the vertices of 𝐺 (indeed
ℰ = 𝑉),

• 𝒜 is the set of arcs, which represent a directed58 link (usually a sen-

58 We use the word edge to refer to
a symmetric connection {𝑢, 𝑣}, while
arc refers to an asymmetric connec-
tion (𝑢, 𝑣). Using this nomenclature,
an undirected graph has edges while a
directed graph has arcs.

tence) between two entities (this approximately corresponds to the
set of edges 𝐸 in a simple graph, but can also be seen as equivalent
to a supervised set of samples 𝒟ℛ),

• 𝜀1 ∶ 𝒜 → ℰ assigns to each arc its source vertex (the entity 𝑒1),
• 𝜀2 ∶ 𝒜 → ℰ assigns to each arc its target vertex (the entity 𝑒2),
• 𝜍 ∶ 𝒜 → 𝒮 assigns to each arc 𝑎 ∈ 𝒜 the corresponding sentence

containing 𝜀1(𝑎) and 𝜀2(𝑎),
• 𝜌 ∶ 𝒜 → ℛ assigns to each arc 𝑎 ∈ 𝒜 the relation linking the two

entities conveyed by 𝜍(𝑎).
In this graph, the vertices are entities with an arc linking them for

each sentence in which they both appear. Figure 4.1 shows the graph cor-
responding to the sentences in Table 2.1. Let’s call 𝑎 ∈ 𝒜 the highlighted
bottom left arc in Figure 4.1 linking smersh to counterintelligence. Ap-
plying the above definitions to this arc we have:
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• 𝜀1(𝑎) = smersh (Q158363)
• 𝜀2(𝑎) = counterintelligence (Q501700)
• 𝜍(𝑎) = In its counter-espionage𝑒2

and counter-intelligence roles,
smersh𝑒1

appears to have been extremely successful
throughout World War II.

• 𝜌(𝑎) = field of work (P101)

Remember that 𝒮 is not simply a set of
regular sentences but a set of sentences
with two tagged and ordered entities.

mi5

Thames House

smersh

counterintelligence

headquarters location

The exterior and interior of Freemasons’ Hall…

occupant

T
he

F
reem

asons’ Hall in London served as the filming…

field of work

In
its

counter-espionage and counter-…

field of work

Golitsyn’s claims about Wilso
n wer

e
be

lie
ve

d…

Figure 4.1: Multigraph 𝐺 correspond-
ing to the four samples of Table 2.1.
For each arc 𝑎, its relation 𝜌(𝑎) is writ-
ten over the arc, and the beginning of
the conveying sentence 𝜍(𝑎) is written
under the arc. For ease of reading, sur-
face forms are given instead of numeri-
cal identifiers. The highlighted arc cor-
responds to the example given above.

In the supervised relation extraction task, the set of relations ℛ is
fully known, and 𝜌 is partially known; the goal is to complete 𝜌. In the
unsupervised relation extraction task, ℛ is unknown, and 𝜌 must be built
from the ground up. We can also encode a knowledge base using this
structure by removing the associated sentences (i.e. the 𝜍 attributes).59

59 Indeed, in this case, the graph is
simply a set of entities linked by re-

lation arcs such as Sanaa Yemen
capital of

.

Note that the graph 𝐺 is directed because most relations and sentences
are asymmetric (inverting the two entities changes the meaning). This
is the only semantic associated with orientation.60

60 For example, while the notion of
sink—a vertex with no outgoing arcs—
might be of interest to graph theorists,
it bears no special meaning in our en-
coding.

In the unsupervised
setting, when the graph is not labeled with relations, each arc 𝑢 𝑣𝑠 has

a symmetric arc 𝑢 𝑣̆𝑠 where ̆𝑠 ∈ 𝒮 is the same sentence as 𝑠 ∈ 𝒮 with the
tags 𝑒1

and 𝑒2
inverted.

For ease of notation, let us define the incident function ℐ associating to
each vertex its set of incident arcs ℐ(𝑒) = {𝑎 ∈ 𝒜 | 𝜀1(𝑎) = 𝑒 ∨ 𝜀2(𝑎) = 𝑒}.
In other words, ℐ associates to each entity the set of samples in which it
appears. Furthermore, for each relation 𝑟 ∈ ℛ, we define the relation
graphs 𝐺⟨𝑟⟩ = (ℰ,𝒜⟨𝑟⟩, 𝜀1, 𝜀2, 𝜌, 𝜍) where 𝒜⟨𝑟⟩ = {𝑎 ∈ 𝒜 ∣ 𝜌(𝑎) = 𝑟} is the
set of arcs labeled with relation 𝑟. We can then define the out-neighbors
𝑁⟨𝑟⟩𝑁 and in-neighbors 𝑁⟨𝑟⟩𝑁 functions on the relation graph 𝐺⟨𝑟⟩ as follows:61 61 Note that the functions we define

here are for the open neighborhood.
This means that we don’t consider a
vertex to be its own neighbor.𝑁⟨𝑟⟩𝑁 (𝑒1) = { 𝑒2 ∈ ℰ | ∃𝑎 ∈ 𝒜 ∶ 𝜀1(𝑎) = 𝑒1 ∧ 𝜀2(𝑎) = 𝑒2 ∧ 𝜌(𝑎) = 𝑟 } ,

𝑁⟨𝑟⟩𝑁 (𝑒1) = { 𝑒2 ∈ ℰ | ∃𝑎 ∈ 𝒜 ∶ 𝜀2(𝑎) = 𝑒1 ∧ 𝜀1(𝑎) = 𝑒2 ∧ 𝜌(𝑎) = 𝑟 } .

Using these definitions we can write expressions for the generic neighbors
function:

𝑁⟨𝑟⟩(𝑒) = 𝑁⟨𝑟⟩𝑁 (𝑒) ∪ 𝑁⟨𝑟⟩𝑁 (𝑒),

𝑁(𝑒) = ⋃
𝑟∈ℛ

𝑁⟨𝑟⟩(𝑒).

https://www.wikidata.org/wiki/Q158363
https://www.wikidata.org/wiki/Q501700
https://www.wikidata.org/wiki/Property:P101
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Finally, we can define the degree of a vertex as its number of neighbors:

deg(𝑒) = |𝑁(𝑒)|,

which can be broken down into in-degree and out-degree using in-neighbors
and out-neighbors.

Since we mention several hypotheses,
we take this opportunity to remind
the reader that all assumptions are de-
tailed in Appendix B.

Using these notations we can reformulate modeling assumptions such
as ℋbiclique (Section 2.5.4), ℋ1-adjacency (Section 2.3.2) and ℋ1 → 1 (Sec-
tion 2.5.6). For example, the hypothesis ℋbiclique draw its name from the
fact that for all relation 𝑟 ∈ ℛ, the relation graph 𝐺⟨𝑟⟩ is assumed to be
a biclique.62

62 A biclique is a complete bipartite
graph. Its vertices can be split into two
sets 𝐴, 𝐵 ⊆ ℰ such that each vertex
in 𝐴 is linked to all vertices in 𝐵. For
example:

𝐴

𝐵

This is especially of interest to study matching the blanks
(mtb, Section 2.5.6). It can be analyzed using the following graph:

𝑒1 𝑒2𝑒3
𝑟3

𝑟1

𝑟2

mtb makes two main assumptions: ℋ1-adjacency and ℋ1 → 1. In the above
graph, ℋ1-adjacency implies that 𝑟1 and 𝑟2 should be the same, while ℋ1 → 1
implies that 𝑟3 should be different from 𝑟1 and 𝑟2. From this simple exam-
ple, we can also see that mtb training is 1-localized, which means that it
only exploits the fact that two samples are direct neighbors.63

63 Here we use neighbors as in “arc-
neighbors.” This is a relation between
two arcs sharing a common endpoint.
Arc-neighbors are simple neighbors
in the line graph described in Sec-
tion 4.4.1.In contrast,

a sentential approach is 0-localized; it completely ignores other samples.
This is actually the case of mtb during evaluation. The same problem
plagues the fill-in-the-blank model of Chapter 3; while training is influ-
enced by the direct neighbors (through the entity embeddings), when
classifying an unknown sample, its neighbors are ignored. The goal of this
chapter is to consider larger neighborhoods both for training unsupervised
models and for making predictions with them.

4.2 Preliminary Analysis and Proof of
Principle

In this section, we want to ensure the soundness of graph-based approaches
by providing some statistics about a large relation extraction dataset. In
particular, we start by building an attributed multigraph as described
in Section 4.1. We focus on t-rex (Section C.7, Elsahar et al. 2018),
an alignment (Section 2.2.2) of Wikipedia with Wikidata. This dataset
has the advantage of being both large and publicly available. Note that
the graph we analyze in this section is not a knowledge base. Each arc
is both labeled with a relation and attributed with a sentence. The fact
that several arcs are incident to a vertex does not necessarily imply that
the corresponding entity is linked by several relations, only that it was
mentioned multiple times.

100 101 102
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Figure 4.2: t-rex vertices degree dis-
tribution. The lines give the frequency
of vertices with the given in- and out-
degree in the dataset. Note that both
axes are log-scaled. This plot was cut
at a degree of 75, which corresponds
to a minimum frequency of 10−5 out
of a total of 19 392 185 arcs. In re-
ality, the vertex with the maximum
degree is “United States of America”
Q30 with an in-degree of 1 522 224. The
asymmetry between the distribution
of in-degrees and out-degrees can be
explained by the fact that knowledge
bases prefer to encode many-to-one re-
lations instead of their one-to-many
converse.Figure 4.2 shows the distribution of vertices’ degrees in the graph as-

sociated with t-rex. The first thing we can notice about this graph is
that it is scale-free. This means that a random vertex 𝑣 ∈ ℰ has degree
deg(𝑣) = 𝑘 with probability 𝑃(𝑘) ∝ 𝑘−𝛾 for a parameter 𝛾 which depends
on the graph. In other words, the distribution of degrees follows a power
law. In a scale-free graph, a lot of vertices have few neighbors. In contrast,
the distribution of degrees in a random Erdős–Rényi graph64

64 There are several different ways
to sample random graphs; the Erdős–
Rényi model is one of them. In this
model, arcs are incrementally added
between two uniformly chosen vertices.
In contrast, if vertices with already
high degrees are selected more often
(the Barabási–Albert model), the re-
sulting graph is scale-free.

is expected
to follow a binomial distribution. Scale-free graphs occur in a number of

https://www.wikidata.org/wiki/Q30
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contexts, such as social networks and graphs of linked web pages. Most
unsupervised relation extraction datasets and knowledge bases should be
expected to be scale-free. This needs to be kept in mind when designing
graph-processing algorithms for relation extraction. Indeed most vertices
have a small neighborhood, so we might be tempted to take neighbors of
neighbors carelessly. However, scale-free graphs have a very small diame-
ter65 𝐷 ∈ 𝑂(log log𝑛). This means that we can quickly reach most vertices 65 The diameter of a graph is the

length of the longest shortest-path:

𝐷 = max
𝑢,𝑣∈ℰ

𝛿(𝑢, 𝑣),

where 𝛿(𝑢, 𝑣) is the length of the short-
est path from 𝑢 to 𝑣.

following a small number of arcs. This is in part due to the fact that some
vertices have very high degree, for example in t-rex, the vertex “United
States of America” Q30 is highly connected with deg(Q30) = 1 697 334.
In particular, this implies that by considering neighbors of neighbors, we
quickly need to consider the whole graph; this is particularly problematic
for graph convolutional networks described in Section 4.3.

We now come to the main incentive for taking a graph-based approach
to the unsupervised relation extraction task:

Hypothesis: In the relation extraction problem, we can get additional
information from the neighborhood of a sample.

To test this hypothesis, we compute statistics on the distribution of neigh-
bors. However, as we just saw, the support of this distribution is of high
dimension. Hence, we look at the statistics of paths in our multigraph.66 66 Paths of length 𝑘 are in a domain

of size |ℛ|𝑘, whereas neighbors are in a
domain of size |ℛ|Δ(𝐺) with Δ(𝐺) des-
ignating the maximum degree in 𝐺. By
studying paths of length 3, we are ef-
fectively studying a subsampled neigh-
borhood of the central arc.

As a graph theory reminder, we can formally define a path as follows:
• A walk on length 𝑛 is a sequence of arcs 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ 𝒜 such that

𝜀2(𝑎𝑖−1) = 𝜀1(𝑎𝑖) for all 𝑖 = 2,… , 𝑛.
• A trail is a walk with 𝑎𝑖 ≠ 𝑎𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (arcs do not

repeat). In practice this means that (𝑠, 𝒆) do not repeat. It is not
a statement about relations conveyed by these arcs; it is entirely
possible that for some 𝑖, 𝑗 we have 𝜌(𝑎𝑖) = 𝜌(𝑎𝑗).

• A path is a trail with 𝜀1(𝑎𝑖) ≠ 𝜀1(𝑎𝑗) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (vertices
do not repeat).

It is also possible to base these definitions on open walks, which are walks
where 𝜀1(𝑎1) ≠ 𝜀2(𝑎𝑛) (the walk does not end where it started). We base
the discussion of this section around the following random path:

e1 e2 e3 e4,
r1 r2 r3

Using these definitions, we can restate our hypothesis. In this path, we The symbol ⟂̸⟂ is used to mean “not
independent”:

a ⟂̸⟂ b ⟺ 𝑃(a, b) ≠ 𝑃(a)𝑃(b)

expect r2 ⟂̸⟂ r1 and r2 ⟂̸⟂ r3. However, enumerating all possible paths in a
graph with 𝑛 = 2 819 966 vertices and 𝑚 = 19 392 185 arcs is not practical.

To approximate path statistics, we turn to sampling. However, uni-
formly sampling paths is not straightforward. As a first intuition, to uni-
formly sample a path of length 1—that is, an arc—we can use the following
procedure: Cat(ℰ, 𝑓) refers to the Categorical dis-

tribution over the set ℰ where the
probability of picking 𝑒 ∈ ℰ is 𝑓(𝑒).
The 2𝑚 appears from the normaliza-
tion factor ∑𝑒∈ℰ deg(𝑒) = 2𝑚.

1. Sample an entity 𝑒1 weighted by its degree,
𝑒1 ∼ Cat (ℰ, 𝑒 ↦ deg(𝑒) ∕ 2𝑚)

2. Uniformly sample an arc incident to the entity 𝑒1.
𝑎 ∼ 𝒰(ℐ(𝑒1))

The first vertex we select must be weighted by how many paths start
there, and since paths of length 1 are arcs, we weight each vertex by its
degree.67

67 To give an intuition, we can also
think of what would happen if we chose
both the entity and incident arc uni-
formly. An arc that links two entities
otherwise unrelated to any other enti-
ties is likely to be sampled since sam-
pling any of its two endpoints as 𝑒1
would guarantee we select this arc. On

If we want to sample paths of length 2, the first vertex must be
selected according to the number of paths of length 2 starting there. Then
the second vertex is selected among the neighbors of the first weighted by
the number of paths of length 1 starting there, etc.

https://www.wikidata.org/wiki/Q30
https://www.wikidata.org/wiki/Q30
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algorithm Path counting
Inputs: 𝐺 = (ℰ,𝒜, 𝜺, 𝜌, 𝜍) relation multigraph

𝑘 paths length
Output: 𝐶 relation paths counter

▷ Initialization ◁
𝐶 ← new counter ℛ𝑘 → ℝ initialized at 0
▷ Main Loop ◁
loop

▷ Initialize the importance weight with 𝒲𝑘 ◁
𝑤 ← (𝟏𝖳𝑴𝑘𝟏)−1 ▷ 𝑴 is the adjacency matrix
Initialize empty walk 𝒂 = ()
Sample 𝑣 ∼ 𝒰(ℰ)
𝑤 ← 𝑛 × 𝑤 ▷ Update 𝑤 following the sampling of 𝑣
for 𝑖 = 1,… , 𝑘 do

Sample 𝑥 ∼ 𝒰(ℐ(𝑣))
𝑤 ← 𝑤× deg(𝑣) ▷ Accumulate 1 ∕ ℱ𝑘

if 𝜀1(𝑥) = 𝑣 then ▷ Continue with 𝜺(𝑥) ⧵ {𝑣}
Append 𝑥 to 𝒂
𝑣 ← 𝜀2(𝑥)

else
Append ̆𝑥 to 𝒂
𝑣 ← 𝜀1(𝑥)

if 𝒂 is a path then
𝒓 ← (𝜌(𝑎𝑖))1≤𝑖≤𝑘 ▷ Take the relations of 𝒂
𝐶[𝒓] ← 𝐶[𝒓] + 𝑤

output 𝐶

Algorithm 4.1: Path counting algo-
rithm. The higher the number of iter-
ations of the main loop, the more pre-
cise the results will be. In our exper-
iments, we used one billion iterations.
The inner for loop builds the walk 𝒂.
If it is a correct path, the relation type
of the path is added to the counter
with importance weight 𝑤. For numer-
ical stability, we actually compute 𝑤 in
log-space. The initial factor 𝑛 = |ℰ| in
𝑤 comes from the preceding uniform
sampling of 𝑣 from ℰ, which is part of
the computation of ℱ𝑘.

the other hand, an arc whose both
endpoints have high degrees has little
chance of being sampled since even if
one of its endpoints is selected as 𝑒1 in
the first step, the arc is unlikely to be
selected in the second step.

Sadly enough, counting paths is #P-complete68 (Valiant 1979) so we 68 A functional complexity class at
least as hard as NP-complete.must rely on the regularity of our graph and turn to approximate algo-

rithms. We propose to use the number of walks as an approximation of
the number of paths.69A classical result on simple graphs 𝐺 = (𝑉 ,𝐸) is
that the powers of the adjacency matrix 𝑴 count the number of walks
between pairs of vertices. For any two vertices 𝑢, 𝑣 ∈ 𝑉, the value 𝑚𝑘

𝑢𝑣—to
be interpreted as (𝑴𝑘)𝑢𝑣—is the number of walks of length 𝑘 from 𝑢 to
𝑣. In the case of our multigraph, if we wish to count walks, the adjacency
matrix should contain the number of arcs—that is, the number of walks
of length 1—between vertices. 69 Other approximations of path

counting exist (Roberts and Kroese
2007), but the approach we propose is
particularly suited to our multigraph.
In particular, the shape parameter 𝛾
of our degree distribution is relatively
small, which produces a large number
of outliers. Our importance-sampling-
based approach allows us to reduce the
variance of the frequency estimations.

We could then build a Monte Carlo estimate by following the naive
procedure above of sampling vertices one by one according to the number
of walks starting with them. Let’s call 𝒲𝑘 this distribution over walks of
length 𝑘. Sampling from 𝒲𝑘 is particularly slow since it involves sampling
from a categorical distribution over thousands of elements. Since we only
want to evaluate a (counting) function over an expectation 𝔼𝒂∼𝒲𝑘, we can
instead perform importance sampling. We use the substitute distribution
ℱ𝑘 that uniformly selects a random neighbor at each step. To make this
trick work, we only need to compute the importance weights 𝒲𝑘(𝒂)

ℱ𝑘(𝒂)
for all

walks 𝒂 ∈ 𝒜𝑘. Since 𝒲𝑘 is the uniform distribution over all walks, it is
constant 𝒲𝑘(𝒂) = (𝟏𝖳𝑴𝑘𝟏)−1. On the other hand ℱ𝑘(𝒂) can be trivially
computed as the product of inverse degrees of 𝑎𝑖. The resulting counting
procedure is listed as Algorithm 4.1. We still need to reject non-paths at
the end of the main loop. Note that this algorithm is not exact since the
importance weights 𝑤 are computed from the number of walks, not paths.

Using this algorithm on one billion samples from t-rex, we find that
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Frequency Relation path
Surface forms Identifiers

54.657‰ country • diplomatic relation • (country P17 • P530 • (

P17
31.696‰ country • diplomatic relation • (citizen of P17 • P530 • (

P27
6.680‰ country • shares border with • (citizen of P17 • P47 • (

P27
0.013‰ country • seceded from • (citizen of P17 • P807 • (

P27
9.445‰ sport • (sport • (member ofst P641 • (

P641 • (

P54
10−6 ‰ sport • (industry • (member ofst P641 • (

P452 • (

P54

Table 4.1: Frequencies of some paths
of length 3 in t-rex. The first column
gives the approximate per mille fre-
quency of paths with the given type. It
is computed as the importance weight
attributed to the path by the counter
𝐶 in Algorithm 4.1 divided by the sum
of all importance weights in 𝐶. We
use st as an abbreviation of “sport
team.” The path in the first row is the
most frequent one in the dataset; other
paths were selected for illustrative pur-
poses. The last path was sampled a sin-
gle time with an importance weight of
0.89.

the most common paths of length three are related to geopolitical rela-
tions,70 see Table 4.1. Let us now turn to statistics that could help rela- 70 This is not surprising as most gen-

eral knowledge datasets are dominated
by geopolitical entities and relations.

tion extraction models. To showcase the dependency between a sample’s
relation r2 and its neighbors r1 and r3, we investigate the distribution
𝑃(r2 ∣ r1, r3). In other words, given a sample, we want to see how its
relation is influenced by the relations of two neighboring samples.

The first value we can look at is the entropy71 H(r2 ∣ 𝑟1, 𝑟3). For exam- 71 This is not a conditional entropy.
The context relations 𝑟1, 𝑟3 are fixed;
they correspond to elementary events,
not random variables (as shown by the
fact that they are italicized, not up-
shape).

ple, in the case of 𝑟1 = sport and 𝑟3 = (member ofst, all observed values of
r2 are given in Table 4.1. All of them were (sport with the exception of a
single path, which means that H(r2 ∣ 𝑟1, 𝑟3) ≈ 0. In other words, if we are
given a sample (𝑠, 𝒆) ∈ 𝒟 and we suspect another sentence containing 𝑒1
to convey sport and another containing 𝑒2 to convey (member ofst, we can
be almost certain that the sample (𝑠, 𝒆) conveys (sport. As a reference for the remainder of

this section, the distribution of rela-
tion in t-rex has an entropy of H(r) ≈
6.26 bits. This is for a domain of |ℛ| =
1 316 relations.

To measure this type of dependency at the level of the dataset, we can
look at the following value:

Dkl (𝑃 (r2 ∣ 𝑟1, 𝑟3) ‖ 𝑃 (r2))

The Kullback–Leibler divergence is also called the relative entropy. Indeed, To give a first intuition of what
this value represents, we take once
again the trivial example of 𝑟1 =
sport and 𝑟3 = (member ofst. In
this case, Dkl (𝑃(r2 ∣ 𝑟1, 𝑟3) ‖ 𝑃(r2)) ≈
5.47 bits. This is due to the fact that
encoding r2 given its neighbors neces-
sitates close to 0 bits (as shown in
Table 4.1, r2 almost always takes the
value (sport) but encoding (sport among
all possible relations in ℛ necessitates
5.47 bits (which is a bit less than
most relations since (sport commonly
appears in t-rex).

Dkl(𝑃 ‖ 𝑄) can be interpreted as the additional quantity of information
needed to encode 𝑃 using the (suboptimal) entropy encoding given by 𝑄.
If this value is 0, it means that no additional information was provided
by 𝑟1 and 𝑟3. When marginalizing over all possible contexts 𝑟1, 𝑟3, we
obtain the mutual information between the relation of a sample 𝑟2 and
the relation of two of its neighbors. On t-rex, we observe:

I(r2; r1, r3) ≈ 6.95 bits

In other words, we can gain 6.95 bits of information simply by modeling
two neighbors (one per entity). These 6.95 bits can be interpreted as the
number of bits needed to perfectly encode r2 given r1, r3 (the conditional
entropy H(r2 ∣ r1, r3) ≈ 1.06 bits) substracted from the number of bits
needed to encode r2 without looking at its neighbors (the cross-entropy
𝔼𝑟1,𝑟3

[H𝑃(r2)(r2 ∣ 𝑟1, 𝑟3)] ≈ 8.01 bits).72 In other words, most of the uncer- 72 We denote the cross-entropy by
H𝑄(𝑃) = − 𝔼𝑃[log 𝑄].tainty about the relation of a sample can be removed by looking at the

relations of two of its neighbors.

4.3 RelatedWork
In the previous section, we show that the attributed multigraph encoding
we introduced in Section 4.1 can help us leverage additional information
for the relation extraction task. In this section, we present the existing

https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P530
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P530
https://www.wikidata.org/wiki/Property:P27
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P47
https://www.wikidata.org/wiki/Property:P27
https://www.wikidata.org/wiki/Property:P17
https://www.wikidata.org/wiki/Property:P807
https://www.wikidata.org/wiki/Property:P27
https://www.wikidata.org/wiki/Property:P641
https://www.wikidata.org/wiki/Property:P641
https://www.wikidata.org/wiki/Property:P54
https://www.wikidata.org/wiki/Property:P641
https://www.wikidata.org/wiki/Property:P452
https://www.wikidata.org/wiki/Property:P54
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framework for computing distributed representations of graphs. In most
cases, these process simple undirected graphs 𝐺 = (𝑉 ,𝐸). Still, these
methods are applicable to our relation extraction multigraph with some
modifications, as shown in Sections 4.3.4 and 4.4.

The use of graphs in deep learning has seen a recent surge of interest
over the last few years. This produced a set of models known as graph
neural networks (gnn) and graph convolutional networks (gcn).73 While 73 The term gcn is used with differ-

ent meanings by various authors. gcns
are always gnns, but the reverse is not
true. However, in practice, the gnns
we describe in this section can essen-
tially be described as gcns. We use
the term gcn to describe models whose
purpose is to have a similar function on
graphs as cnns have on images. Some
authors only refer to the model of Kipf
and Welling (2017) described in Sec-
tion 4.3.2 as a gcn. In this case, what
we call gcn can be called convgnn
(convolutional graph neural networks).
In any case, gnn and gcn can be
considered almost synonymous for the
purpose of this thesis since we don’t
describe any exotic gnn which clearly
falls outside of the realm of gcn.

the first works on gnn started more than twenty years ago (Sperduti
and Starita 1997), we won’t go into a detailed historical review, and we
exclusively focus on recent models. Note that we already presented an older
graph-based approach in Section 2.4.1, the label propagation algorithm.
We also discussed epgnn in Section 2.4.5, which is a model built on top
of a gcn. We further draw parallels between epgnn and our proposed
approach in Section 4.4.1.

The thread of reasoning behind this section is as follows:
• We present the “usual” way to process graphs (Sections 4.3.1–4.3.4).
• We present the theory behind these methods (Section 4.3.5).
• We show how this theoretical background can help us design a new

approach specific to the unsupervised relation extraction task (Sec-
tion 4.4).

In this related work overview, we mainly describe algorithms working on
standard 𝐺 = (𝑉 ,𝐸) graphs, not the labeled multigraphs of Section 4.1,
with the exception of Section 4.3.4. We start by quickly describing models
based on random walks in Section 4.3.1; these are spatial methods which
serve as a gentle introduction to the manipulation of graphs by neural
networks. Furthermore, they were influential in the development of sub-
sequent models and in our preliminary analysis with computation of path
statistics (Section 4.2), which allows us to draw parallels with more mod-
ern approaches. We then introduce the two main classes of gcn—which
consequently are also the two main classes of gnn—used nowadays: spec-
tral (Section 4.3.2) and spatial (Section 4.3.3). Apart from the few works
mentioned in Chapter 2, gnns were seldom used for relation extraction.
We, therefore, focus on the evaluation of gnn on an entity classification
task, which while different from our problem, works on similar data. In
Section 4.3.4, we describe models designed to handle relational data in a
knowledge base, in particular r-gcn. We close this related work with a
presentation of the Weisfeiler–Leman isomorphism test in Section 4.3.5;
it serves as a theoretical motivation behind both gcns and our proposed
approach.

4.3.1 Random-Walk-BasedModels
DeepWalk (Perozzi et al. 2014) is a method to learn vertex representa- Perozzi et al., “DeepWalk: Online

Learning of Social Representations”
kdd 2014

tions from the structure of the graph alone. The representations encode
how likely it is for two vertices to be close to each other in the graph. To
this end, DeepWalk models the likelihood of random walks in the graph
(Section 4.2). These walks are simply sequences of vertices. To obtain a
distributed representation out of them, we can use the nlp approaches
of Sections 1.2 and 1.3 by treating the set of vertices as the vocabulary
𝑉 = ℰ. In particular, DeepWalk uses the skip-gram model of Word2vec
(Section 1.2.1.1), using hierarchical softmax to approximate the partition
function over all words—i.e. vertices. Vertices part of the same random
walk are used as positive examples. In the same way that learning rep-

https://dl.acm.org/doi/pdf/10.1145/2623330.2623732
https://dl.acm.org/doi/pdf/10.1145/2623330.2623732
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resentations to predict the neighborhood of a word gives good word rep-
resentations, modeling the neighborhood of a vertex gives good vertex
representations.

Perozzi et al. (2014) evaluate their model on a node classification task.
For example, one of the datasets they use is BlogCatalog (Tang and Liu
2009), where vertices correspond to blogs, edges are built from social net-
work connections between the various bloggers, and predicted labels are
the set of topics on which each blog focuses. DeepWalk is a transduc-
tive method but was extended into an inductive approach called planetoid
(Yang et al. 2016). Planetoid also proposes an evaluation on an entity Yang et al., “Revisiting Semi-Super-

vised Learning with Graph Embed-
dings” icml 2016

classification task performed on the nell dataset. The goal of this task
is to find the type of an entity (e.g. person, organization, location…) in
a knowledge base (Section 1.4). To this end, a special bipartite74 graph 74 A bipartite graph is a graph 𝐺 =

(𝑉 , 𝐸) where the vertices can be split
into two disjoint sets 𝑉1 ∪ 𝑉2 = 𝑉 such
that all edges 𝑒 ∈ 𝐸 have one endpoint
in 𝑉1 and one endpoint in 𝑉2.

𝐺b = (𝑉b, 𝐸b) is constructed where 𝑉b = ℰ ∪ℛ and:

𝐸b = {{𝑒, 𝑟} ⊆ 𝑉b ∣ ∃𝑒′ ∈ ℰ ∶ (𝑒, 𝑟, 𝑒′) ∈ 𝒟kb ∨ (𝑒′, 𝑟, 𝑒) ∈ 𝒟kb }

This clearly assumes ℋbiclique: for each relation the information of “which
𝑒1” corresponds to “which 𝑒2” is discarded. However this information is
not as crucial for entity classification as it is for relation extraction. A
small example of graph 𝐺b obtained this way is given in Figure 4.3. The
model is trained by jointly optimizing the negative sampling loss and the
the log-likelihood of labeled examples. On unseen entities, planetoid reach
an accuracy of 61.9% when only 0.1% of entities are labeled.

Italy

Peru

Kenya

Rome

Lima

Nairobi

Samuel Brejar

Tiberius Gracchus

capital of 𝑒2

𝑒1 capital of

born in 𝑒2

𝑒1 born in

Figure 4.3: nell dataset bipartite
graph. Entities are on the left, while
relation slots are on the right. In this
graph, the edges are left unlabeled.

Using random walks allows DeepWalk and planetoid to leverage the
pre-existing nlp literature. However, for each sample, only a small frac-
tion of the neighborhood—two neighbors at most—of each node is consid-
ered to make a prediction. Subsequent methods focused on modeling the
information of the whole neighborhood jointly.

4.3.2 Spectral gcn
The first approaches to successfully model the neighborhood of vertices
jointly were based on spectral graph theory (Bruna et al. 2014). In practice,
this means that the graph is manipulated through its Laplacian matrix
instead of directly through the adjacency matrix. In this section, we base
our presentation of spectral methods on the work of Kipf and Welling
(2017)

Kipf and Welling, “Semi-Supervised
Classification with Graph Convolu-
tional Networks” iclr 2017

. The graph Laplacian is similar to the
standard Laplacian measuring the di-
vergence of the gradient (Δ = ∇2)
of scalar functions. Except that the
graph gradient is an operator mapping
a function on vertices to a function on
edges:

(∇𝒇)𝑖𝑗 = 𝑓𝑖 − 𝑓𝑗

And that the graph divergence is an
operator mapping a function on edges
to a function on vertices:

(div 𝑮)𝑖 = ∑
𝑗∈𝑉

𝑚𝑖𝑗𝑔𝑖𝑗

Given these definitions, the graph
Laplacian is defined as Δ = − div ∇.
Applying Δ to a signal 𝒙 ∈ ℝ𝑛 is equiv-
alent to multiplying this signal by 𝑳c
as defined in Equation 4.1: Δ𝒙 = 𝑳c𝒙.

We start by introducing some basic concepts from spectral graph the-
ory used to define the convolution operator on graphs. The Laplacian of
an undirected graph 𝐺 = (𝑉 ,𝐸) can be defined as:

𝑳c = 𝑫−𝑴, (4.1)

where 𝑫 ∈ ℝ𝑛×𝑛 is the diagonal matrix of vertex degrees 𝑑𝑖𝑖 = deg(𝑣𝑖) and
𝑴 ∈ ℝ𝑛×𝑛 is the adjacency matrix. Equation 4.1 defines the combinatorial
Laplacian; however, spectral gcns are usually defined on the normalized
symmetric Laplacian:

𝑳sym = 𝑫−1⁄2𝑳c𝑫−1⁄2 = 𝑰 −𝑫−1⁄2𝑴𝑫−1⁄2.

Using this definition, we can then take the eigendecomposition of the
Laplacian 𝑳sym = 𝑼𝜦𝑼−1, where 𝜦 is the ordered spectrum—the diago-
nal matrix of eigenvalues sorted in increasing order—and 𝑼 is the matrix

https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v48/yanga16.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
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of normalized eigenvectors. For an undirected graph, the matrix 𝑴 is sym-
metric, therefore 𝑼 is orthogonal. The orthonormal space formed by the
normalized eigenvectors is the Fourier space of the graph. In other words,
we can define the graph Fourier transform of a signal 𝒙 ∈ ℝ𝑉 as:

The expansion of signals in terms of
eigenfunctions of the Laplace opera-
tor is the leading parallel between the
graph Fourier transform and the clas-
sical Fourier transform on ℝ (Shuman
et al. 2013). In ℝ, the eigenfunctions
𝜉 ↦ 𝑒2𝜋𝑖𝜉𝑥 correspond to low frequen-
cies when 𝑥 is small. In the same way,
the eigenvectors of the graph Lapla-
cian associated with small eigenval-
ues assign similar values to neighbor-
ing vertices. In particular the eigen-
vector associated with the eigenvalue
0 is constant with value 1 ∕

√
𝑛. On

the other hand, eigenvectors associ-
ated with large eigenvalues correspond
to high frequencies and encode larger
changes of value between neighboring
vertices.

ℱ(𝒙) = 𝑼𝖳𝒙.

Furthermore since the induced space is orthogonal, the inverse Fourier
transform is simply defined as:

ℱ 1(𝒙) = 𝑼𝒙.

Having defined the Fourier transform on graphs, we can use the defini-
tion of convolutions as multiplications in the Fourier domain to define
convolution on graphs:

𝒙 ∗ 𝒘 = ℱ 1(ℱ(𝒙) ⊙ ℱ(𝒘)), (4.2)

where ⊙ denotes the Hadamard (element-wise) product. Note that the
convolution operator implicitly depends on the graph 𝐺 since 𝑼 is defined
from the adjacency matrix 𝑴. The signal 𝒘 in Equation 4.2 has the
same function as the parametrized filter of cnn (Equation 1.7). Instead of
learning 𝒘 in the spatial domain, we can directly parametrize its Fourier
transform 𝒘𝜽 = diag(ℱ(𝒘)), simplifying Equation 4.2 into: diag(𝒙) is the diagonal matrix with

values of the vector 𝒙 along its diag-
onal.𝒙 ∗ 𝒘𝜽 = 𝑼𝒘𝜽𝑼𝖳𝒙. (4.3)

While 𝒘𝜽 could be learned directly (Bruna et al. 2014), Defferrard et al.
(2016) propose to approximate it by Chebyshev polynomials of the first
kind (𝑇𝑘) of the spectrum 𝜦:

𝒘𝜽(𝜦) =
𝐾

∑
𝑘=0

𝜃𝑘𝑇𝑘(𝜦). (4.4)

The rationale is that computing the eigendecomposition of the graph
Laplacian is too computationally expensive. The Chebyshev polynomi-
als approximation is used to localize the filter; since the 𝑘-th Chebyshev
polynomial is of degree 𝑘, only values of vertices at a distance of at most
𝑘 are needed.75

75 The reasoning behind this localiza-
tion is the same as the one underly-
ing the fact that the 𝑘-th power of the
adjacency matrix gives the number of
walks of length 𝑘 (Section 4.2).

This is similar to how cnns are usually computed; simple
very localized filters are used instead of taking the Fourier transform of
the whole input matrix to compute convolution with arbitrarily complex
functions. Chebyshev polynomials of the first kind are defined as:

Despite its appearance, Equation 4.5
defines a series of polynomials which
can be obtained through the applica-
tion of various trigonometric identities.
An alternative but equivalent defini-
tion is through the following recursion:

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥)

The plot of the first five Chebyshev
polynomials of the first kind follows:

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1
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𝑇3 𝑇4

𝑇𝑘(cos𝑥) = cos(𝑘𝑥). (4.5)

They form a sequence of orthogonal polynomials on the interval [−1, 1]
with respect to the weight 1 ∕

√
1 − 𝑥2, meaning that for 𝑘 ≠ 𝑘′:

∫
1

−1
𝑇𝑘(𝑥)𝑇𝑘′(𝑥) d𝑥√

1 − 𝑥2
= 0.

The filter defined by Equation 4.4 is 𝐾-localized, meaning that the
value of the output signal on a vertex 𝑣 is computed from the value of
𝒙 on vertices at distance at most 𝐾 of 𝑣. This can be seen by plugging
Equation 4.4 back into Equation 4.3, noticing that it depends on the 𝑘-th
power of the Laplacian and thus of the adjacency matrix.76
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Kipf and Welling (2017) proposed to use 𝐾 = 1 with several further 76 Derivation of the dependency on
𝑳𝑘

sym for the proof of 𝐾-locality:

𝒙 ∗ 𝒘𝜽(𝜦) = 𝑼 (
𝐾

∑
𝑘=0

𝜃𝑘𝑇𝑘(𝜦)) 𝑼𝖳𝒙

= (
𝐾

∑
𝑘=0

𝜃𝑘𝑼𝑇𝑘(𝜦)𝑼𝖳) 𝒙

= (
𝐾

∑
𝑘=0

𝜃𝑘𝑇𝑘(𝑳sym)) 𝒙

For the last equality, notice that
𝑳𝑘

sym = (𝑼𝜦𝑼𝖳)𝑘 = 𝑼𝜦𝑘𝑼𝖳 since 𝑼
is orthogonal. This can also be applied
to the (diagonal) constant term.

optimizations we won’t delve into. Using 𝐾 = 1 means that their method
computes the activation of a node only from its activation and the activa-
tions of its neighbors at the previous layer. This makes the gcn of Kipf and
Welling (2017) quite similar to spatial methods described in Section 4.3.3.
All the equations given thus far were for a single scalar signal; however,
we usually work with vector representations for all nodes, 𝑿 ∈ ℝ𝑛×𝑑. In
this case, the layer ℓ of a gcn can be described as:

𝑯(ℓ+1) = ReLU ((𝑫 + 𝑰)−1⁄2(𝑴 + 𝑰)(𝑫 + 𝑰)−1⁄2𝑯(ℓ)𝜣(ℓ))

Where 𝜣 ∈ ℝ𝑑×𝑑 is the parameter matrix. Using 𝑯(0) = 𝑿, we can
use a gcn with 𝐿 layers to combine the embeddings in the 𝐿-localized
neighborhood of each vertex into a contextualized representation.

Kipf and Welling (2017) evaluate their model on the same nell dataset
used by planetoid with the same 0.1% labeling rate. They train their model
by maximizing the log-likelihood of labeled examples. They obtain an
accuracy of 66.0%, which is an increase of 4.9 points over planetoid.

4.3.3 Spatial gcn

Figure 4.4: Parallel between two-
dimensional cnn data and gcn data.

Hamilton et al., “Inductive Repre-
sentation Learning on Large Graphs”
neurips 2017

Spatial methods directly draw from the comparison with cnn in the spatial
domain. As shown by Figure 4.4, the lattice on which a 2-dimensional77

77 Even though the same comparison
could be made with 1-dimensional cnn
as introduced in Section 1.3.1, the sim-
ilarity is less visually striking. Espe-
cially when considering a filter of width
3, in which case the equivalent graph is
a simple path graph: … … .

cnn is applied can be seen as a graph with a highly regular connectiv-
ity pattern. In this section, we introduce spatial gcn by following the
Graphsage model (Hamilton et al. 2017).

When computing the activation of a specific node with a cnn, the
filter is centered on this node, and each neighbor is multiplied with a
corresponding filter element. The products are then aggregated by sum-
mation. Spatial gcns purpose to mimic this process. The main obstacle to
generalizing this spatial view of convolutions to graphs is the irregularity
of neighborhoods.78 In a graph, nodes have different numbers of neighbors;

78 Interestingly enough, this is also
a problem with standard cnns when
dealing with values at the edges of the
matrix.

a fixed-size filter cannot be used. Graphsage proposes several aggregators
to replace this product–sum process:

Mean aggregator The neighbors are averaged and then multiplied by a
single filter 𝑾 (𝑙):

aggregate(ℓ+1)
mean(𝑣) = 𝜎(𝑾 (ℓ) 1

deg(𝑣) + 1
∑

𝑢∈𝑁(𝑣)∪{𝑣}
𝒉(ℓ)

𝑢 ).

A spatial gcn using this aggregator is close to the gcn of Kipf and
Welling (2017) with 𝐾 = 1 presented in Section 4.3.2.

Lstm aggregator An lstm (Section 1.3.2.1) is run through all neighbors
with the final hidden state used as the output of the layer.

aggregate(ℓ+1)
lstm (𝑣) = lstm(ℓ) ((𝒉(ℓ)

𝑢 )
𝑢∈𝑁(𝑣)

)
deg(𝑣)

.

Since lstms are not permutation-invariant, the order in which the
neighbors are presented is important.

Pooling aggregator A linear layer is applied to all neighbors which are
then pooled through a max operation.

aggregate(ℓ+1)
max (𝑣) = max({𝑾 (ℓ)𝒉(ℓ)

𝑢 + 𝒃(ℓ) ∣ 𝑢 ∈ 𝑁(𝑣)}) .

https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
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Note that the maximum is applied feature-wise.

Using one of these aggregator, a Graphsage layer performs the three fol-
lowing operations for all vertices 𝑣 ∈ 𝑉: As usual the matrices 𝑾 (𝑙)

𝑖 are train-
able model parameters.

𝒂(ℓ+1)
𝑣 ← aggregate(ℓ+1)(𝑣)

𝒉(ℓ+1)
𝑣 ← 𝜎(𝑾 (ℓ)

1 𝒉(ℓ)
𝑣 +𝑾 (ℓ)

2 𝒂(ℓ+1)
𝑣 )

𝒉(ℓ+1)
𝑣 ← 𝒉(ℓ+1)

𝑣 ∕ ∥𝒉(ℓ+1)
𝑣 ∥2.

However, this approach still performs poorly when the graph is irregular.79 79 In graph theory, a 𝑘-regular graph
is a graph where all vertices have de-
gree 𝑘. By irregular, we mean that
the distribution of vertices degrees has
high variance; we don’t use the term
in its formal “highly irregular” mean-
ing. This is indeed the case in scale-
free graphs, as their variance is infinite
when 𝛾 < 3.

In particular, high-degree vertices—such as “United States” in t-rex as
described in Section 4.2—incur significant memory usage. To solve this,
Graphsage proposes to sample a fixed-size neighborhood for each vertex
during training. Their representation is therefore computed from a small
number of neighbors. Since 𝐿 layers of Graphsage produce 𝐿-localized
representations, vertices need to be sampled at most at distance 𝐿 of the
vertex for which we want to generate a representation. Hamilton et al.
(2017) propose an unsupervised negative sampling loss to train their gcn
such that adjacent vertices have similar representations:

ℒgs = ∑
(𝑢,𝑣)∈𝐸

log𝜎 (𝒛𝖳
𝑣𝒛𝑢) − 𝛾 𝔼

𝑣′∼𝒰(𝑉 )
[log𝜎 (−𝒛𝖳

𝑣′𝒛𝑢)] (4.6)

where 𝒁 = 𝑯(𝐿) is the activation of the last layer and 𝛾 is the number of
negative samples.

One of the advantages of Graphsage compared to the approach of
Kipf and Welling (2017) is that it is inductive, whereas the spectral gcn
presented in Section 4.3.2 is transductive. Indeed, in the spectral approach,
the filter is trained for a specific eigenvectors matrix 𝑼 which depends
on the graph. If the graph changes, everything must be re-trained from
scratch. In comparison, the parameters learned by Graphsage can be
reused for a different graph without any problem.

A limitation of Graphsage is that the contribution of each neighbor
to the representation of a vertex 𝑣 is either fixed at 1 ∕ (deg(𝑣) + 1) (with
the mean aggregator) or not modeled explicitly. The same can be observed
with the model of Kipf and Welling (2017), where the representation of
each neighbor 𝑢 is nonparametrically weighted by 1 ∕√deg(𝑣) + deg(𝑢).

In contrast, graph attention network (gat, Veličković et al. 2018) Veličković et al., “Graph Attention
Networks” iclr 2018proposes to parametrize this weight with a model similar to the atten-

tion mechanism presented in Section 1.3.3. The output is built using an
attention-like80 convex combination of transformed neighbors’ representa- 80 Veličković et al. (2018) actually pro-

pose to use multi-head attention (Sec-
tion 1.3.4.1). We describe their model
with a single attention head for ease of
notation.

tions:

𝒉(ℓ+1)
𝑣 ← 𝜎( ∑

𝑢∈𝑁(𝑣)∪{𝑣}
𝛼(ℓ)

𝑣𝑢𝑾 (ℓ)𝒉(ℓ)
𝑢 ),

where 𝛼(ℓ)
𝑣𝑢, the attention given by 𝑣 to neighbor 𝑢 at layer ℓ, is computed

using a softmax: LeakyReLU (Maas et al. 2013) is a
variant of ReLU where the negative do-
main is linear with a small slope in-
stead of being mapped to zero:

LeakyReLU(𝑥) = {𝑥 if 𝑥 > 0,
0.01𝑥 otherwise.

𝛼(ℓ)
𝑣𝑢 ∝ exp LeakyReLU(𝒈(ℓ)𝖳 [𝑾

(ℓ)
gat𝒉𝑣

𝑾 (ℓ)
gat𝒉𝑢

]) .

As usual, the matrices 𝑾 are parameters, as well as the vector 𝒈 which
is used to combine the representations of the two vertices into a scalar
weight.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
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While gat and Graphsage can be trained in an unsupervised fashion
following Equation 4.6, they can also be used as building blocks for larger
models, similarly to how we use cnn in Chapter 3. Coupled with the fact
that they have a simpler theoretical background and are easier to imple-
ment, spatial methods have become ubiquitous to graph-based approaches
in the last few years.

4.3.4 gcn on Relation Graphs
All the work introduced in the above sections is about simple undirected
graphs 𝐺 = (𝑉 ,𝐸). In contrast, in Section 4.1, we encoded the relation ex-
traction problem on attributed multigraphs 𝐺 = (ℰ,𝒜, 𝜺, 𝜌). Some works
propose to extend gcn to the case of multigraphs, especially when deal-
ing with knowledge bases.81 This is the case of r-gcn (Schlichtkrull et al. 81 In this case, the multigraph is sim-

ply labeled since the set of relations is
finite. In contrast, in the relation ex-
traction problem, the multigraph is at-
tributed. The arcs are associated with
a sentence from an infinite set of pos-
sible sentences.

2018), a graph convolutional network for relational data. The input graph

Schlichtkrull et al., “Modeling Rela-
tional Data with Graph Convolutional
Networks” 2018

is not labeled with sentences (𝜍) since r-gcn intents to model a knowledge
base 𝒟kb. This means that while 𝐺 is a multigraph, the subgraphs 𝐺⟨𝑟⟩
are simple graphs for all relations 𝑟 ∈ ℛ. r-gcns exploit this by using a
separate gcn filter for each relation. An r-gcn layer can be defined as:

Note that only the outgoing neighbors
𝑁⟨𝑟⟩𝑁 are taken since for each incoming
neighbor labeled 𝑟, there is an outgoing
one labeled ̆𝑟.

𝒉(ℓ+1)
𝑣 ← 𝜎⎛⎜⎜

⎝
𝑾 (ℓ)

0 𝒉(ℓ)
𝑣 +∑

𝑟∈ℛ
∑

𝑢∈𝑁⟨𝑟⟩𝑁 (𝑣)

𝑾 (ℓ)
𝑟 𝒉(ℓ)

𝑢
⎞⎟⎟
⎠

, (4.7)

where 𝑾0 ∈ ℝ𝑑′×𝑑 is used for the (implicit) self-loop, while |ℛ| different Paralleling the notations used for cnns
in Section 1.3.1, we use 𝑑 to denote the
dimension of embeddings at layer ℓ and
𝑑′ for the dimension at layer ℓ+1. More
often than not, the same dimension is
used at all layers 𝑑′ = 𝑑. In the follow-
ing, we use 𝑑 as a generic notation for
embedding and latent dimensions.

filters 𝑾𝑟 ∈ ℝ𝑑′×𝑑 are used for capturing the arcs. With highly multi-
relational data, the number of parameters grow rapidly since a full matrix
needs to be estimated for all relations, even rare ones. To address this issue,
Schlichtkrull et al. (2018) propose to either constrain the matrices 𝑾𝑟 to
be block-diagonal, or to decompose them on a small basis 𝙕 (ℓ) ∈ ℝ𝐵×𝑑′×𝑑:

𝑾 (ℓ)
𝑟 =

𝐵

∑
𝑏=1

𝑎(ℓ)
𝑟𝑏 𝒁

(ℓ)
𝑏 ,

where 𝐵 is the size of the basis and 𝒂𝑟 are the parametric weights for the
matrices 𝑾𝑟.

Schlichtkrull et al. (2018) evaluate their model on two tasks. First,
they evaluate on an entity classification task using a simple softmax layer
with a cross-entropy loss on top of the vertex representation at the last
layer (𝑯(𝐿) as defined by Equation 4.7). Second, more closely related to
relation extraction, they evaluate on a relation prediction task. Given a This is similar to the evaluation of

TransE reported in Section 1.4.2.3; ex-
cept that instead of predicting a miss-
ing entity in a tuple (𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb,
the model must predict the missing
relation, assuming ℋ1-adjacency in the
process.

pair of entity (𝑒1, 𝑒2) ∈ ℰ2, the model must predict the relation 𝑟 ∈ ℛ
between them, such that (𝑒1, 𝑟, 𝑒2) ∈ 𝒟kb. To this end, Schlichtkrull et al.
(2018) employ the DistMult model which can be seen as a rescal model
(Section 1.4.2.2) where the interaction matrices are diagonal. The energy
of a fact is defined as:

𝜓DistMult(𝑒1, 𝑟, 𝑒2) = 𝒖𝖳
𝑒1
𝑪𝑟𝒖𝑒2

,

where 𝒖𝑒 is the embedding of the entity at the last layer of the r-gcn:
𝒖𝑒 = 𝒉(𝐿)

𝑒 and 𝑪𝑟 ∈ diag(ℝ𝑑) is a diagonal matrix parameter. The proba-
bility associated to a fact by DistMult is proportional to the exponential
of the energy function 𝜓DistMult. Therefore, a missing relation between
𝑒1, 𝑒2 ∈ ℰ can be predicted by taking the softmax over relations 𝑟 ∈ ℛ

https://arxiv.org/pdf/1703.06103.pdf
https://arxiv.org/pdf/1703.06103.pdf
https://arxiv.org/pdf/1703.06103.pdf
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of 𝜓DistMult(𝑒1, 𝑟, 𝑒2). r-gcns are trained using negative sampling (Sec-
tion 1.2.1.3) on the entity classification and relation prediction tasks. This
is similar to the training of TransE, where the main difference is that
the entity embeddings are computed using r-gcn layers instead of being
directly fetched from an entity embedding matrix.

A limitation of r-gcns is that they only rely on vertices’ represen-
tation. Even when the evaluation involves the classification of arcs (as
is the case with relation prediction), this is only done by combining the
representations of the endpoints (using DistMult).

Several works build upon r-gcn. gp-gnn (H. Zhu et al. 2019) applies H. Zhu et al., “Graph Neural Networks
with Generated Parameters for Rela-
tion Extraction” acl 2019

a similar model to the supervised relation extraction task. In this case,
the graph is attributed with sentences instead of relations; therefore, the
weight matrices 𝑾𝑟 are generated from the sentences instead of using
an index of all possible relations. They apply their model to Wikipedia
distantly supervised by Wikidata. However, the classification is still made
from the representation of the endpoints of arcs. Related work also appears
in the heterogeneous graph community (Z. Hu et al. 2020; X. Wang et al.
2019). Heterogeneous graphs are graphs with labels on both vertices and Z. Hu et al., “Heterogeneous Graph

Transformer” www 2020
X. Wang et al., “Heterogeneous Graph
Attention Network” www 2019

arcs. The model proposed by Z. Hu et al. (2020) is similar to r-gcn
with an attention mechanism more akin to the transformer’s attention
(Section 1.3.4.1) than classical attention (Section 1.3.3). The canonical
evaluation datasets of this community are citation graphs. Vertices are
assigned labels such as “people,” “article” and “conference,” while arcs are
labeled with a small number of domain-specific relations: author, published
at, cite, etc. The evaluation task typically corresponds to entity prediction.

4.3.5 Weisfeiler–Leman Isomorphism Test

1 2

3 4

5 6

7 8

𝑎 𝑑

𝑏 𝑐

𝑒 ℎ

𝑓 𝑔

Figure 4.5: Example of isomorphic
graphs. Each vertex 𝑖 in the first graph
corresponds to the 𝑖-th letter of the al-
phabet in the second graph. Alterna-
tively, these graphs have nontrivial au-
tomorphism, for example, by mapping
vertex 𝑖 to vertex 9 − 𝑖.

In this section, we introduce the theoretical background of gcns. This
is of particular interest to us since this theoretical background is more
closely related to unsupervised relation extraction than gcns can be at first
glance. As stated in the introduction to the thesis, relations emerge from
repetitions. In particular, we expect that two identical (sub-)graphs convey
the same relations. However, testing whether two graphs are identical is a
complex problem. Indeed, we have to match each of the 𝑛 vertices of the
first graph to one of the 𝑛 possibilities in the second graph. Naively, we
need to try all 𝑛! possibilities. This is known as the graph isomorphism
problem. Two simple graphs 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2) are said to be
isomorphic (𝐺1 ≃ 𝐺2) iff there exists a bijection 𝑓∶ 𝑉1 → 𝑉2 such that
(𝑢, 𝑣) ∈ 𝐸1 ⟺ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸2. Figure 4.5 gives an example of two
isomorphic graphs.

The various gcn methods introduced thus far can be seen as generaliza-
tions of the Weisfeiler–Leman82

82 Often spelled Weisfeiler–Lehman,
Babai (2016) indicates that Andreĭ Le-
man preferred to transliterate his name
without an “h.”isomorphism test (Weisfeiler and Leman

1968), which tests whether two graphs are isomorphic. The 𝑘-dimensional Weisfeiler and Leman, “The reduction
of a graph to canonical form and the al-
gebra which appears therein” nti 1968

Weisfeiler–Leman isomorphism test (𝑘-dim wl) is a polynomial-time al-
gorithm assigning a color to each 𝑘-tuple of vertices83 such that two iso-

83 An ordered sequence of 𝑘 vertices,
that is an element of 𝑉 𝑘, not necessar-
ily connected.

morphic graphs have the same coloring. With a bit of work, the general
𝑘-dim wl algorithm can be implemented in 𝑂(𝑘2𝑛𝑘+1 log𝑛) (Immerman
and Lander 1990). However, there exist pairs of graphs that are not iso-
morphic, yet are assigned with the same coloring by the Weisfeiler–Leman
test (Cai et al. 1992)

Cai et al., “An optimal lower bound
on the number of variables for graph
identification” Combinatorica 1992

. At the time of writing, the precise membership of
the graph isomorphism problem with respect to the polynomial complex-
ity classes is still conjectural. No polynomial-time algorithm nor reduction

https://aclanthology.org/P19-1128
https://aclanthology.org/P19-1128
https://aclanthology.org/P19-1128
https://dl.acm.org/doi/pdf/10.1145/3366423.3380027
https://dl.acm.org/doi/pdf/10.1145/3366423.3380027
https://dl.acm.org/doi/pdf/10.1145/3308558.3313562
https://dl.acm.org/doi/pdf/10.1145/3308558.3313562
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://people.cs.umass.edu/~immerman/pub/opt.pdf
https://people.cs.umass.edu/~immerman/pub/opt.pdf
https://people.cs.umass.edu/~immerman/pub/opt.pdf
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algorithm Weisfeiler–Leman
Inputs: 𝐺 = (𝑉 ,𝐸) graph

𝑘 dimensionality
Output: 𝜒∞ coloring of 𝑘-tuples

▷ Initialization ◁
ℓ ← 0
for all 𝒙 ∈ 𝑉 𝑘 do

𝜒0(𝒙) ← iso(𝒙)
▷ Main Loop ◁
repeat

ℓ ← ℓ + 1
ℑℓ ← new color index
for all 𝒙 ∈ 𝑉 𝑘 do

𝑐ℓ(𝒙) ← {{𝜒ℓ−1(𝒚) ∣ 𝒚 ∈ 𝑁𝑘(𝒙) }}
𝜒ℓ(𝒙) ← index of (𝜒ℓ−1(𝒙), 𝑐ℓ(𝒙)) in ℑℓ

until 𝜒ℓ = 𝜒ℓ−1
output 𝜒ℓ

Algorithm 4.2: The Weisfeiler–Leman
isomorphism test. The double braces
{{ }} denote a multiset. Since ℑℓ is
indexed with the previous coloring
𝜒ℓ−1(𝒙) of the vertices—alongside
𝑐ℓ(𝑥)—the number of color classes is
strictly increasing until the last itera-
tion when it remains constant. Since
the last coloring is stable, we refer to
it as 𝜒∞.

from np-complete problems are known. This makes graph isomorphism one
of the prime candidates for the np-intermediate complexity class.84 84 The class of np problems neither in

p nor np-complete. It is guaranteed to
be non-empty if p ≠ np. Clues for the
np-intermediateness of the graph iso-
morphism problem can be found in the
fact that the counting problem is in
np (Mathon 1979) and more recently,
from the fact that a quasi-polynomial
algorithm exists (Babai 2015).

The general 𝑘-dim wl test is detailed in Algorithm 4.2. It is a refine-
ment algorithm, which means that at a given iteration, color classes can
be split, but two 𝑘-tuples with different colors at iteration ℓ can’t have
the same color at iteration ℓ′ > ℓ. Initially, all 𝑘-tuples 𝑥 are assigned a
color according to their isomorphism class iso(𝑥). We define the isomor-
phism class through an equivalence relation. For two 𝑘-tuples 𝒙, 𝒚 ∈ 𝑉 𝑘,
iso(𝑥) = iso(𝑦) iff:85

85 To avoid having to align two col-
orings, the wl algorithm is usually
run on the disjoint union of the two
graphs. So, strictly speaking, it tests
for automorphism (isomorphic endo-
morphism). Therefore we can assume
𝒙 and 𝒚 are from the same vertex set
𝑉.

• ∀𝑖, 𝑗 ∈ [1,… , 𝑘] ∶ 𝑥𝑖 = 𝑥𝑗 ⟺ 𝑦𝑖 = 𝑦𝑗

• ∀𝑖, 𝑗 ∈ [1,… , 𝑘] ∶ (𝑥𝑖, 𝑥𝑗) ∈ 𝐸 ⟺ (𝑦𝑖, 𝑦𝑗) ∈ 𝐸

Intuitively, this checks whether 𝑥𝑖 ↦ 𝑦𝑖 is an isomorphism for the sub-
graphs built from the 𝑘 vertices 𝒙 and 𝒚. This is not the same as the graph
isomorphism problem since here, the candidate isomorphism is given, we
don’t have to test the 𝑘! possibilities.

The coloring of 𝒙 ∈ 𝑉 𝑘 is refined at each step by juxtaposing it with
the coloring of its neighbors 𝑁𝑘(𝒙). We need to reindex the new colors at
each step since the length of the color strings would grow exponentially
otherwise. The set of neighbors86 of a 𝑘-tuple for 𝑘 ≥ 2 is defined as: 86 Note that the kind of neighborhood

defined by 𝑁𝑘 completely disregards
the edges in the graph. For this rea-
son, it is sometimes called the global
neighborhood.

𝑁𝑘(𝒙) = {𝒚 ∈ 𝑉 𝑘 ∣ ∃𝑖 ∈ [1,… , 𝑘] ∶ ∀𝑗 ∈ [1,… , 𝑘] ∶ 𝑗 ≠ 𝑖 ⟹ 𝑥𝑗 = 𝑦𝑗 } .

In other words, the 𝑘-tuples 𝒚 neighboring 𝒙 are those differing by at most
one vertex with 𝒙.

The 1-dim wl test is also called the color refinement algorithm. In this
case, 𝑁1(𝑥) is simply 𝑁(𝑥) the set of neighbors of 𝑥. The isomorphism
class of a single vertex is always the same, so 𝜒0 assigns the same color to
all vertices. The first iteration of the algorithm groups vertices according
to their degree (the multiplicity of the sole element in the multiset 𝑐1(𝑥)).
The second iteration 𝜒2 then colors each vertex according to its degree 𝜒1
and the degree of its neighbors 𝑐2. And so on and so forth until 𝜒 does
not change anymore.
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The gcn introduced in the previous sections can be seen as variants
of the 1-dim wl algorithm where the index ℑℓ is replaced with a neu-
ral network such as aggregate(ℓ)

mean given in Section 4.3.3. In this case 𝜒ℓ
corresponds to 𝑯(ℓ) the activations at layer ℓ.

4.4 Proposed Approaches
We now turn to the graph-based models we propose to leverage infor-
mation from the structure of the dataset. Let us quickly summarize the
context in which we inscribe our work. We have access to two kinds of
features: linguistic—from the sentence—and topological—from the graph.
Unsupervised relation extraction methods do not fully exploit graph neigh-
borhoods.87 Supervised methods such as epgnn and gp-gnn do, even 87 As explained in Section 4.1, mtb

does use close neighborhoods as con-
trast during training, but not for infer-
ence.

though the information present in the graph is more important in the un-
supervised setting. Indeed, the relational information is mostly extractable
from the sentences and entities alone. While extra information from topo-
logical features can still be used by supervised models, it is not essential.
On the other hand, in the unsupervised setting, the main issue is to iden-
tify the relational information in the sentence, to distinguish it from other
semantic contents. As we show in Section 4.2, this relational information
is also present in the topological features (the neighborhood of a sample).
This can be useful in two ways:

1. Use both pieces of information jointly, linguistic and topological:
“the more features, the better.” This is what supervised models do.

2. Use the topological features to identify the relational information in
the linguistic features.

In Section 4.4.1, we exploit the first point by adding a gcn to the
matching the blanks model (mtb, Section 2.5.6). In Section 4.4.2, we show
that topological features can be used without training a gcn. This also
serves as an introduction to Section 4.4.3, which proposes an unsupervised
loss following the second point above; it exploits the fact that relation
information is present in both linguistic and topological features.

4.4.1 Using Topological Features
In this section, we seek to use topological information as additional fea-
tures for an existing unsupervised model: matching the blanks (mtb). The
usefulness of these features lies in the fact that many relations are “typed”:
e.g. they only accept geographical locations as objects and only people as
subjects (such as born in). This can be captured by looking at the neigh-
borhood of each entity, which can be seen as a “soft” version of ℋtype
(“relations are typed,” Section 2.5.3).

A straightforward approach is to parallel the construction of r-gcn
(Section 4.3.4): use a gcn-like encoder followed by a relation classifier—in
the case of r-gcn, DistMult. In effect, this corresponds to taking mtb
and augmenting it with a gcn to process neighboring samples. As a re-
minder, mtb uses a similarity-based loss where each unsupervised sample
(𝑠, 𝒆) ∈ 𝒟 is represented by bertcoder(𝑠). In this model, the information
lies on the arcs. In order to use a gcn model, we transform our graph
𝐺 = (ℰ,𝒜, 𝜺, 𝜌, 𝜍) such that the information lies on the vertices instead.
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This transformed graph is called the line graph of 𝐺 and noted 𝐿(𝐺). An
illustration for simple undirected graphs is provided in Figure 4.6. For a
directed (multi)graph, it is defined as follows:

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑎𝑏

𝑎𝑐

𝑏𝑐

𝑐𝑑

𝑐𝑒

𝑐𝑓

𝑑𝑓

𝑒𝑓

𝐺:

𝐿(𝐺):

Figure 4.6: Example of line graph con-
struction. Each edge 𝑥 — 𝑦 in the sim-
ple undirected graph 𝐺 corresponds
to the vertex 𝑥𝑦 with the same color
in the graph 𝐿(𝐺). Two vertices in
𝐿(𝐺) are connected iff the correspond-
ing edges share an endpoint in 𝐺. In
directed graphs, the two arcs further
need to be in the same direction in 𝐺
for an arc to exist in 𝐿(𝐺).

𝐿(𝐺) = (𝒜,𝔄, 𝜺, 𝜍)
𝔄 = { (𝑎1, 𝑎2) ∈ 𝒜2 ∣ 𝜀2(𝑎1) = 𝜀1(𝑎2) } .

In other words, each arc becomes a vertex and an arc 𝑎1 → 𝑎2 is present if
and only if 𝑎1 and 𝑎2 form a directed path of length 2. The neighborhood of
each sample (arc is the original 𝐺) is still defined as all other samples with
at least one entity in common since by construction for all v-structures

𝑒1 𝑒2 𝑒3
𝑎1 𝑎2 , there exists a directed path 𝑒1 𝑒2 𝑒3

𝑎1 �̆�2 in the original graph
𝐺. This construction is actually similar to the one of epgnn introduced in
Section 2.4.5. The main difference is that each vertex in 𝐿(𝐺) corresponds
to a sample in 𝒟, while an epgnn graph groups samples by entity pairs
into a single vertex.

The standard loss and training algorithm of mtb as defined by Equa-
tion 2.10 can be reused as is, we only need to redefine the similarity func-
tion (Equation 2.9):

sim(𝑎, 𝑎′, 𝐺) = 𝜎(
bertcoder(𝜍(𝑎))𝖳 bertcoder(𝜍(𝑎′))

+𝜆gcn(𝐿(𝐺))𝖳𝑎 gcn(𝐿(𝐺))𝑎′

),

(4.8)
where 𝜆 is a hyperparameter weighting the topological-based prediction
over the sentence-based one. At the input of the gcn, the vertices are
labeled using the same sentence encoder: 𝒙𝑎 = bertcoder(𝜍(𝑎)).

The only difference between mtb and the mtb–gcn hybrid we propose
is the additional 𝜆-weighted term in Equation 4.8. We use this model to
evaluate whether topological features can be exploited by an existing un-
supervised relation extraction loss. It tells us how much can be gained from
the “adding more features” aspect of graph-based methods and contrast
it with the new topology-aware loss design we propose in Section 4.4.3.

4.4.2 Nonparametric Weisfeiler–Leman Iterations
The losses used to train unsupervised gnns usually make the hypothesis
that linked vertices should have similar representations. This can be seen
in ℒgs (Equation 4.6), which seeks to maximize the dot product between
the representations of adjacent vertices. While this hypothesis might be
helpful for most problems on which gnns are applied, this is clearly not
the case for relation extraction. In Section 4.4.1, we introduced a first
simple solution to this problem is to replace the loss used by the gnn
with a standard unsupervised relation extraction loss. However, it is also
possible to design an unsupervised loss from the theoretical foundation of
gcn: the Weisfeiler–Leman isomorphism test. To this end, we propose to
build a model relying on the following hypothesis:

Weak Distributional Hypothesis on Relation Extraction Graph:
Two arcs conveying similar relations have similar neighborhoods.

Note that we dubbed this version of the distributional hypothesis weak
since we only state it in one direction, the converse having several counter-
examples. For example, sentences about the place of birth and the place



4 Graph-Based Aggregate Modeling 116

of death of a person tend to have similar neighborhoods despite conveying
different relations.88 To distinguish these kinds of relations with similar 88 The neighborhoods are somewhat

dissimilar in that “notable” people
tend to die in places with more popu-
lation than their birthplace. However,
whether current models can pick this
up from other kinds of regularity in a
dataset is dubious.

neighborhoods, we have to rely on sentence representations.89

89 This can partly explain the condi-
tional entropy H(r2 ∣ r1, r3) ≈ 1.06 bits
given in Section 4.2.

Following this hypothesis, we first propose a simple parameter-less ap-
proach based on the Weisfeiler–Leman isomorphism test (Section 4.3.5).
We can say that two neighborhoods are similar if they are isomorphic.
Therefore, we can enforce the hypothesis above by ensuring that if two
neighborhoods are assigned similar coloring by the wl algorithm, they
convey similar relations. In the relation extraction problem, contrary to
much of the related work presented in Section 4.3, we have data on the
arcs of the graph, not on the vertices. This means that instead of using
the 1-dimensional Weisfeiler–Leman algorithm, we use the 2-dimensional
version. In other words, instead of coloring the vertices, we color the arcs
since our problem is to label them with a relation.

The initial coloring 𝜒0(𝑎) is initialized as the isomorphism class of a
sample 𝑎 ∈ 𝒜. We can define this isomorphism class using bertcoder(𝑎),
which means that the initial representation of a sample will simply be the
sentential representation of the sample. The difficult task is to define the
re-indexing of colors as performed by ℑ in Algorithm 4.2. This is difficult
since the original wl algorithm is defined on a discrete set of colors, while
we need to manipulate distributed representations of sentences. The astute reader might have no-

ticed that the 2-dimensional wl iso-
morphism test as described in Algo-
rithm 4.2 loops over pairs of vertices,
not arcs. This is impractical in our rela-
tion extraction graph, which is partic-
ularly sparse—the number of arcs 𝑚 is
far larger than the number of vertices
𝑛. The extra (unlinked) entity pairs
considered by Algorithm 4.2 are usu-
ally referred to as anti-arcs. Ignoring
anti-arcs leads to the local Weisfeiler–
Leman isomorphism tests since only
the “local neighborhood” is consid-
ered. Other intermediate approaches
are possible, sometimes referred to as
the glocalized variants of Weisfeiler–
Leman. See Morris et al. (2020) for
an example of application to graph
embeddings. Alternatively, our pro-
posed approach can be seen as a 1-
dimensional Weisfeiler–Leman isomor-
phism test applied to the line graph.

If we want to produce clear-cut relation classes, we can use a hashing
algorithm on sentence representations such as the one proposed for graph
kernels by Morris et al. (2016). However, we focus on a few-shot evaluation
in order to compare with mtb and to avoid errors related to knowledge
base design as described in Section 2.5.1.2. In this case, we only need to be
able to compare the colors of two different samples, measuring how close
they are to each other. Let us define 𝒩 ∶ 𝒜 → 2𝒜 the function mapping
an arc to the set of its neighbors. Formally, for 𝑎 ∈ 𝒜, 𝒩(𝑎) = {𝑎′ ∈ 𝒜 ∣
𝜺(𝑎) ∩ 𝜺(𝑎′) ≠ ∅}. In other words, 𝒩 in 𝐺 corresponds to the neighbors
function 𝑁 in the line graph 𝐿(𝐺). Since 𝒜 can be seen as the set of
samples, 𝒩(𝑎) can be seen as the set of samples with at least one entity in
common with 𝑎. To enforce the weak distributional hypothesis on graphs
stated above, we take two first-order neighborhoods 𝒩(𝑎),𝒩(𝑎′) ⊆ 𝒜
and define a distance between them. This corresponds to comparing two
empirical distributions of sentence representations90 that have an entity in

90 We are comparing sentence repre-
sentations and not directly sentences
since the initial coloring 𝜒0 has been
defined using bertcoder.

common with 𝑎 and 𝑎′. This can be done using the 1-Wasserstein distance
between the two neighborhoods since they can be seen as two distributions
of Dirac deltas in bertcoder representation space.91 This needs to be done

91 Wasserstein distance has the advan-
tage of working on distributions with
disjoint supports.

for the two entities, which correspond to the in-arc-neighbors 𝒩 and
out-arc-neighbors 𝒩 . While this is 1-localized, we can generalize this
encoding to be 𝐾-localized by defining the 𝑘-sphere centered on an arc 𝑎,
where the 1-sphere corresponds to 𝒩:

𝑆 (𝑎, 0) = { 𝑎 }
𝑆 (𝑎, 𝑘) = {𝑥 ∈ 𝒜 ∣ ∃𝑦 ∈ 𝑆 (𝑎, 𝑘 − 1) ∶ 𝜀1(𝑥) = 𝜀2(𝑦) }.

This sphere can be embedded using bertcoder, which corresponds to re-
trieving its initial coloring:

𝔖 (𝑎, 𝑘) = {bertcoder(𝜍(𝑥)) ∈ ℝ𝑑 ∣ 𝑥 ∈ 𝑆 (𝑎, 𝑘) }.

We can thereafter define the 𝐾-localized out-neighborhood of 𝑎 ∈ 𝒜 as the
sequence of 𝔖 (𝑎, 𝑘) for all 𝑘 = 1,… ,𝐾. The in-neighborhood is defined
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similarly. Finally, the distance between two samples 𝑎, 𝑎′ ∈ 𝒜 can be
defined as: To be precise Equation 4.9 defines a

distance between samples from the Eu-
clidean distances between neighboring
samples—that is samples with an en-
tity in common. The distance 𝑊1 is
the cost of the optimal transport plan
between two sets of Dirac deltas corre-
sponding to the neighborhoods of the
samples.

𝑑(𝑎, 𝑎′; 𝝀) =
𝐾

∑
𝑘=0

𝜆𝑘
2

∑
𝑜∈{ , }

𝑊1 (𝔖𝑜(𝑎, 𝑘),𝔖𝑜(𝑎′, 𝑘)) , (4.9)

where 𝑊1 designates the 1-Wasserstein distance, and 𝝀 ∈ ℝ𝐾+1 weights
the contribution of each sphere to the final distance value. In particular
𝜆0 parametrizes how much the linguistic features should weight compared
to topological features.92 92 The 1-Wasserstein distance is de-

fined on top of a metric space; there-
fore, the difference between two neigh-
bors must be defined using the Eu-
clidean distance. We can’t use dot
product as usually done with bert rep-
resentations (see for example Equa-
tion 2.9). However, we can slightly
change Equation 4.9 to use the dot
product for the computation of the lin-
guistic similarity (the term 𝑘 = 0). In
this case, however, 𝑑 would no longer
satisfy the properties of a metric.

To relate this function back to our original re-coloring problem, the
distance 𝑑 up to 𝐾 can be seen as a distance on 𝜒𝐾, the coloring assigned at
step 𝐾. Indeed, if 𝑑(𝑎, 𝑎′, 𝝀) = 0 then 𝜒𝐾(𝑎) = 𝜒𝐾(𝑎′). However, while two
colors are either equal or not in the original algorithm, the distance 𝑑 gives
a topology to the set of arcs. We don’t directly compute a hard-coloring of
2-tuples. The closest thing to a coloring 𝜒 in our algorithm is the sphere
embedding 𝔖, which in fact, is more akin to 𝑐 in Algorithm 4.2. In other
words, we skip the re-indexing step of the Weisfeiler–Leman algorithm to
deal with the continuous nature of sentence embeddings at the cost of a
higher computational cost.

Combining a Wasserstein distance with Weisfeiler–Leman was already
proposed for graph kernels (Togninalli et al. 2019). However, this was
applied to a simple graph without attributed edges, and it was unrelated to
any information extraction task. For unsupervised relation extraction, the
distance function 𝑑 can directly be used to compute the similarity between
query and candidates samples in a few-shot problem (Section 2.5.1.2).
Since the number of arcs at distance 𝑘 grows quickly in a scale-free graph,93 93 Remember that the diameter of the

(scale-free) graph is in the order of
log log 𝑛.

we either need to keep 𝐾 low or employ sampling strategies similarly
to Graphsage (Section 4.3.3). Furthermore, the Wasserstein distance is
hard to compute exactly; entropic regularization of the objective has been
proposed. In particular, 𝑊1 can be efficiently computed with Sinkhorn
iterations (Cuturi 2013).

4.4.3 Refining Linguistic and Topological Features
While the nonparametric method presented in the previous section man-
ages to consider both the linguistic and topological features, it processes
them in isolation. In this section, we propose a scheme that allows both
the encoder of linguistic and topological features to adapt to each other
in a training process. Conceptually, this is somewhat similar to Selfore
(Section 2.5.7). As a reminder, Selfore is a clustering method that purifies
relation clusters by optimizing bertcoder such that samples with close lin-
guistic forms are pushed closer. In our scheme, we propose to refine both
linguistic and topological features with respect to each other. In this way As a reminder, ℋctx(1-adjacency) states

that two samples with similar contex-
tualized embeddings convey similar re-
lations. See Appendix B.

we hope to both enforce ℋctx(1-adjacency) and the following assumption:

Assumption ℋ1-neighborhood: Two samples with the same neighborhood
in the relation extraction graph convey the same relation.
∀𝑎, 𝑎′ ∈ 𝒜∶ 𝒩(𝑎) = 𝒩(𝑎′) ⟹ 𝜌(𝑎) = 𝜌(𝑎′)

Note that this is the converse of the weak distributional hypothesis on
relation extraction graph stated in Section 4.4.2. We need to make the
modeling hypothesis in this direction since in the unsupervised relation
extraction problem, we do not have access to relations and therefore can’t
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enforce an hypothesis between samples conveying the same relations. We
posit that by balancing ℋctx(1-adjacency) and ℋ1-neighborhood we are able to
exploit the structure induced by both sources information in an unsuper-
vised samples (𝑠, 𝒆) ∈ 𝒟: the sentence 𝑠 and entities 𝒆, whereas Selfore
only relies on the sentence 𝑠.

To define the topological and linguistic distance between two sam-
ples, we use the distance function defined by Equation 4.9. For computa-
tional reasons, we set 𝐾 = 1, which means that our model is 1-localized.
The linguistic distance is simply the distance between the bertcoder of
the samples’ sentences. In other words, it is 𝑑(𝑎, 𝑎′; [1, 0]𝖳). On the other
hand, the topological distance can be defined as the distance between the
two neighborhoods, in other words, 𝑑(𝑎, 𝑎′; [0, 1]𝖳). We propose to train
bertcoder such that these two distances coincide more. In practice, this
can be achieved with a triplet loss similar to the one used by TransE
(Section 1.4.2.3). Given three arcs 𝒂 ∈ 𝒜3, we ensure the two distances
are similar between the two first arcs 𝑎1 and 𝑎2, and we contrast these
distances using the third arc 𝑎3. This translates to the following loss: Intuitively, we want to optimize the

mean squared error (mse) between the
linguistic and topological features of
all pairs of arcs (𝑑(𝑎1, 𝑎2, [1, 0]𝖳) −
𝑑(𝑎1, 𝑎2, [0, 1]𝖳))2. However, this loss
could be optimized by encoding all
arcs into a single point. The out-
put of bertcoder would then be con-
stant. Therefore, we need to regu-
larize the mse loss such that dis-
tances that shouldn’t be close are
not. This is the point of the triplet
loss; we contrast the positive dis-
tance delta with a negative one. While
𝑑(𝑎1, 𝑎2, [1, 0]𝖳) and 𝑑(𝑎1, 𝑎2, [0, 1]𝖳)
should be close to each other (because
of ℋ1-neighborhood), they shouldn’t be
close to any distance involving a third
sample 𝑎3. This ensures that our model
does not collapse.

ℒlt(𝑎1, 𝑎2, 𝑎3) = max
⎛⎜⎜⎜
⎝

0, 𝜁 + 2(𝑑(𝑎1, 𝑎2, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎2, [0, 1]𝖳))
2

− (𝑑(𝑎1, 𝑎2, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎3, [0, 1]𝖳))
2

− (𝑑(𝑎1, 𝑎3, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎2, [0, 1]𝖳))
2

⎞⎟⎟⎟
⎠

,

where 𝜁 > 0 is a hyperparameter defining the maximum margin we seek to
enforce between the true distance-error and the negative distance-error. By
randomly sampling arcs triplets 𝒂 ∈ 𝒜3, we can fine-tune a bertcoder in
an unsupervised fashion such that it captures both linguistics and topolog-
ical features. During evaluation, the procedure described in Section 4.4.2
can be reused, such that both linguistic representations refined by the
topological structure and the topological representations refined by the
linguistic structure are used jointly. However, both distances could be used
independently, for example if a sample contains unseen entities, or on the
contrary if we want to assess which relation links two entities without any
supporting sentence.

4.5 Experiments
Matching the blanks was trained on a huge unsupervised dataset that is
not publicly available (Soares et al. 2019). To ensure reproducibility, we
instead attempt to train on t-rex (Section C.7, Elsahar et al. 2018). The Elsahar et al., “t-rex: A Large Scale

Alignment of Natural Language with
Knowledge Base Triples” lrec 2018

evaluation is done in the few-shot setting (Section 2.5.1.2) on the FewRel
dataset (Section C.2) in the 5-way 1-shot setup. Our code is available at
https://esimon.eu/repos/gbure.

The bertcoder model we use is the entity markers–entity start de-
scribed in Section 2.3.7, based on a bert-base-cased transformer. We use
a bertcoder with no post-processing layer for the standalone bert model.
The mtb model is followed by a layer norm even during pre-training as de-
scribed by Soares et al. (2019). The mtb similarity function remains a dot
product but was rescaled to be normally distributed. When augmenting
mtb with a gcn, we tried both the Chebyshev approximation described in
Section 4.3.2 and the mean aggregator of Section 4.3.3, however we were
only able to train de Chebyshev variant at the time of writing. The non-
parametric wl algorithm uses a dot product for linguistic similarity and

https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://esimon.eu/repos/gbure
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a Euclidean 1-Wasserstein distance for topological distance; the hyperpa-
rameters are 𝝀 = [−1, 0.2]𝖳.

Model Accuracy

Linguistic (bert) 69.46
Topological (𝑊1) 65.75
Nonparametric wl 72.18

mtb 78.83
mtb gcn–Chebyshev 76.10

Table 4.2: Preliminary results for
FewRel valid accuracies of graph-based
approaches. To better evaluate the
efficiency of topological features, we
report results on the subset of the
dataset that is connected in t-rex.

We report our results in Table 4.2. The given numbers are accura-
cies on the subset of FewRel with at least one neighbor in t-rex. The
accuracies on the whole dataset are 73.74% for linguistic features alone
(bert) and 77.54% for mtb. Our results for mtb are still slightly below
what Soares et al. (2019) report because of the bert model size mismatch
and the smaller pre-training dataset. The result gap is within expecta-
tions, as already reported by other works that used a similar setup on the
supervised setup (Qu et al. 2020). On the other hand, our accuracy for a
standalone bert is higher than what Soares et al. (2019) report; we sus-
pect this is due to our removal of the randomly initialized post-processing
layer.

The top half of Table 4.2 reports results for nonparametric models.
These models were not trained for the relation extraction task; they sim-
ply exploit an mlm-pretrained bert in clever ways. As we can see, while
topological features are a bit less expressive to extract relations by them-
selves, they still contain additional information that can be used jointly
with linguistic features—this is what the nonparametric wl model does.

For parametric models, we have difficulties training on t-rex because
of its relative small size. In practice 66.89% of FewRel entities are already
mentioned in t-rex. However, a standard 5-way 1-shot problem contains
(1 + 5) × 2 = 12 different entities. We measure the empirical probability
that all entities of a few-shot problem are connected in t-rex to be around
0.54%. Furthermore, we observe that mtb augmented with a gcn performs
worse than a standalone mtb despite adding a single linear layer to the
parameters (the bertcoder of the linguistic and topological distances are
shared). These are still preliminary results, however, it seems the small
size of t-rex coupled with the large amount of additional information
presented to the model cause it to overfit on the train data. We observe a
similar problem with the triplet loss model of Section 4.4.3. At the time of
writing, our current plan is to attempt training on a larger graph, similar
to the unsupervised dataset of Soares et al. (2019).

4.6 Conclusion
In this chapter, we explore aggregate approaches to unsupervised relation
extraction using graphs. In Section 4.2, we show that a large amount of
information can be leveraged from the neighborhood of a sample. This,
together with the observation that previous unsupervised methods always
ignored the neighborhood of a sample at inference, opens a new research
direction for unsupervised methods. In Section 4.4, we propose several
models that make use of the neighborhood information. In particular, we
propose a novel unsupervised training loss in Section 4.4.3, which makes
very few modeling assumptions while still being able to exploit the neigh-
borhood information both at training and prediction time.

Our contributions lie in using a multigraph with arcs attributed with
sentences (Sections 4.1), our method to approximate the quantity of in-
formation extractible from this graph (Sections 4.2) and our proposed ap-
proach to utilize this additional information (Section 4.4). Despite encour-
aging early results showing the soundness of using the relation extraction
graph, at the present time we only improved nonparametric models. More
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experimentation is still needed to fully exploit topological information.
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Conclusion

During this Ph.D. candidacy, I—mostly94—focused on the study of unsu- 94 With the occasional—and deeply
appreciated—distraction of Syrielle
Montariol on unrelated nlp projects
(Montariol et al. 2022).

pervised relation extraction. In this task, given a set of tagged sentences
and pairs of entities, we seek the set of conveyed facts (𝑒1, 𝑟, 𝑒2), such that
𝑟 embodies the relationship between 𝑒1 and 𝑒2 expressed in some sample.
To tackle this task, we follow two main axes of research: first, the question
of how to train a deep neural network for unsupervised relation extraction;
second, the question of how to leverage the structure of an unsupervised
dataset to gain additional information for the relation extraction task.

Summary of Contributions
For more than a decade now, the field of machine learning has been over-
run by deep learning approaches. Since I started working on unsupervised
relation extraction in late 2017, the task followed the same fate. The vae
model of Marcheggiani and Titov (2016) started introducing deep learning Marcheggiani and Titov, “Discrete-

State Variational Autoencoders for
Joint Discovery and Factorization of
Relations” tacl 2016

methods to the task. However, it was still limited by a sentence represen-
tation based on hand-engineered features. My first axis of research was
to partake in this deep learning transition (Chapter 3). Subsequently, the
use of deep learning was made simpler with the replacement of cnn and
lstm-based models with pre-trained transformers. Indeed, a model like
bert (Devlin et al. 2019) performs reasonably well on unsupervised re-
lation extraction “out of the box.” This was exploited by others, in the
clustering setup by Selfore (X. Hu et al. 2020), and in the few-shot setup X. Hu et al., “Selfore: Self-supervised

Relational Feature Learning for Open
Relation Extraction” emnlp 2020

by mtb (Soares et al. 2019). My second axis of research was to exploit

Soares et al., “Matching the Blanks:
Distributional Similarity for Relation
Learning” acl 2019

the regularities of the dataset to leverage additional information from its
structure (Chapter 4). While some works already used this information in
supervised relation extraction (Chen et al. 2006; Zhao et al. 2019), unsu-
pervised models made no attempt at modeling it explicitly. Our proposed
approaches are based on a graph representation of the dataset. As we
have shown, they inscribe themselves in a general revival of graph-based
approaches in deep learning (Hamilton et al. 2017; Kipf and Welling 2017).
We now describe the three main contributions we can draw from our work.

Literature review with formalized modeling assumptions.
In Chapter 2, we presented relevant relation extraction models from the
late 1990s until today. We first introduced supervised approaches, which
we split into two main blocks:

Sentential methods extract a relation for each sample in isolation. In this
setup, there is no difference between evaluating a model on a single
dataset with a thousand samples or a thousand datasets containing

https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
https://aclanthology.org/P19-1279
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one sample each. Indeed, these models do not model the interactions
between samples.

Aggregate methods map a set of unsupervised samples to a set of facts
at once. There is not necessarily a direct correspondence between
extracted facts and samples in the dataset, even though most ag-
gregate models still provide a sentential prediction. In this setup, a
dataset containing a single sentence would be meaningless; it would
boil down to a sentential approach.

This distinction can also be made for unsupervised models, and indeed
Chapter 3 follows mostly a sentential approach, whereas Chapter 4 pur-
poses to introduce the aggregate approach to the unsupervised setting.

In Chapter 2, we also presented unsupervised relation extraction mod-
els. Unsupervised models need to rely on modeling hypotheses to capture
the notion of relation. While these hypotheses are not always clearly stated As a reminder, the modeling hypothe-

ses are listed in Appendix B.in articles, they are central to the design of unsupervised approaches. For
our review, we decided to exhibit the key modeling hypotheses of relevant
models. Formalizing these hypotheses allows us to have a clear under-
standing of what kind of relations cannot be modeled by a given model.
Furthermore, it simplifies the usually challenging task of designing an un-
supervised relation extraction loss.

Regularizing discriminative approaches for deep encoders.
In Chapter 3, we introduced the first unsupervised model that does not
rely on hand-engineered features. In particular, we identified two criti-
cal weaknesses of previous discriminative models which hindered the use
of deep neural networks. These weaknesses relate to the model’s output,
which tends to collapse to a trivial—either deterministic or uniform—
distribution. We introduced two relation distribution losses to alleviate
these problems: a skewness loss pushes the prediction away from a uni-
form distribution, and a distribution distance loss prevents the output
from collapsing to a deterministic distribution. This allowed us to train
a pcnn model to cluster unsupervised samples in clusters conveying the
same relation.

Exploiting the dataset structure using graph-based models.
In Chapter 4, we investigated aggregate approaches for unsupervised re-
lation extraction. We encoded the relation extraction problem as a graph
labeling—or attributing—problem. We then showed that information can
be leveraged from this structure by probing distributional regularities of
random paths. To exploit this information, we designed an assumption us-
ing our experience from Chapter 2 to leverage the structure of the graph
to supervise a relation extraction model. We then proposed an approach
based on this hypothesis by modifying the Weisfeiler–Leman isomorphism
test to use a 1-Wasserstein distance.

From a higher vantage point, we can say that we first assisted the
development of deep learning approaches for the task of unsupervised re-
lation extraction, and then helped open a new direction of research on
aggregate approaches in the unsupervised setup using graph-based mod-
els. Both of these research objects were somewhat natural developments
following current trends in machine learning research.
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Perspectives
Using language modeling for relation extraction. A recent trend
in nlp has been to encode all tasks as language models. The main embod-
iment of this trend is T5 (Raffel et al. 2020). T5 is trained as a masked Raffel et al., “Exploring the Limits of

Transfer Learning with a Unified Text-
to-Text Transformer” jmlr 2020
The name T5 comes from “Text-To-
Text Transfer Transformer” since it re-
casts every nlp task as a text-to-text
problem.

language model (mlm, Section 1.3.4.2) on a sizeable “common crawl” of the
web. Then, it is fine-tuned by prefixing the sequence with a task-specific
prompt such as “translate English to German:”. Relation extraction can
also be trained as a text-to-text model in the supervised setup (Trisedya
et al. 2019). Extending this model to the unsupervised setup—for exam-
ple, through the creation of pseudo-labels—could allow us to leverage the
large amount of linguistic information contained in the T5 parameters. In
the same vein, Ushio et al. (2021) propose to use predefined and learned Ushio et al., “Distilling Relation Em-

beddings from Pretrained Language
Models” 2021

prompts for relation prediction, for example by filling in the following tem-
plate: “Today, I finally discovered the relation between 𝑒1 and 𝑒2: 𝑒1 is the
<blank/> of 𝑒2.”

More generally, relation extraction is closely related to language mod-
els. The first model we experimented on during this Ph.D. candidacy was
a pre-trained language model used to fill sentences such as “The capital of
Japan is <blank/>.” While Vaswani et al. (2017) was already published at Vaswani et al., “Attention is All you

Need” neurips 2017the time, pre-trained transformer language models were not widely avail-
able yet. We used a basic lstm, which was strongly biased in favor of
entities often appearing in the dataset. In practice, the model predicted
“London” as the capital of most small countries. However, as we showcased
in Section 2.5.6, large transformer-based models such as bert (Devlin et al.
2019) perform well out-of-the-box on unsupervised relation extraction. An
additional argument in favor of transformer-based language models comes
from Chapter 3. Indeed, the fill-in-the-blank model seeks to predict an en-
tity blanked in the input; this is similar to the mlm task. More abstractly,
language purposes to describe a reality which can be understood—among
other things—through the concept of relation. And indeed, if one under-
stands language, one must understand the relations conveyed by language.
Using a model of language as a basis for a model of relations is promising,
as long as the semantic fragment of language unrelated to relations can be
discarded.

Dataset-level modeling hypotheses. In the past few years, graph-
based approaches have gained traction in the information extraction field
(Fu et al. 2019; Qian et al. 2019) and we can only expect this interest to Qian et al., “Graphie: A Graph-Based

Framework for Information Extrac-
tion” 2019

continue growing in the future. While knowledge of the language should be
sufficient to understand the relation underlying most samples, it is chal-
lenging to design an unsupervised loss solely relying on linguistic informa-
tion. Furthermore, following distributional linguistics, language—and thus
relations conveyed by language—are acquired through structured repeti-
tions. The concept of repetition captured by graph adjacency can therefore
also provide a theoretical basis for the design of modeling hypotheses. We
can even argue that capturing the structure of the data is an ontologically
prior modeling level. For this reason, we think that relation graphs should
provide a better basis for the formulation of modeling hypotheses.

Complex relations. Several simplifying assumptions were made to de-
fine the relation extraction task. For example, we assume all relations to
be binary, holding between exactly two entities. However, 𝑛-ary relations

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.emnlp-main.712
https://aclanthology.org/2021.emnlp-main.712
https://aclanthology.org/2021.emnlp-main.712
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/N19-1082
https://aclanthology.org/N19-1082
https://aclanthology.org/N19-1082
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are needed to model complex interrelationships. For example, encoding
the fact that “a drug 𝑒1 can be used to treat a disease 𝑒2 when the patient
has genetic mutation 𝑒3” necessitates a ternary relation. This problem has
been tackled for a long time (McDonald et al. 2005; Song et al. 2018). The
graph-based approaches have a natural extension to 𝑛-ary relation in the
form of hypergraphs, which are graphs with 𝑛-ary edges. Since the hyper-
graph isomorphism problem can be polynomially reduced to the standard
graph isomorphism problem (Zemlyachenko et al. 1985), we can expect
𝑛-ary extension of graph-based relation extraction approaches to work as
well as standard relation extraction.

A related problem is the one of fact qualification. The fact “Versailles
capital of France” only held until the 1789 revolution. In the Wikidata
parlance, these kinds of details are called qualifiers. In particular, the tem-
poral qualification can be critical to certain relation extraction datasets
(Jiang et al. 2019). Some information extraction datasets already include
this information (Mesquita et al. 2019); however, little work has been made
in this direction yet. Qualifiers could be generated from representations
of relations in a continuous manifold such as the one induced by a sim-
ilarity space for few-shot evaluation. However, learning to map relation
embeddings to qualifiers in an unsupervised fashion might prove difficult.
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Appendix A

Résumé en français

“Puisque tu fais de la géométrie et
de la trigonométrie, je vais te donner
un problème : Un navire est en mer, il
est parti de Boston chargé de coton, il
jauge 200 tonneaux ; il fait voile vers
le Havre, le grand mât est cassé, il y a
un mousse sur le gaillard d’avant, les
passagers sont au nombre de douze, le
vent souffle n.-e.-e., l’horloge marque
3 heures un quart d’après-midi, on est
au mois de mai… On demande l’âge du
capitaine ?

— Gustave Flaubert, « Lettre du
16 mai 1843 à sa sœur » (1926)

Flaubert se moque de l’enseigne-
ment mathématique à « son vieux
rat » (Caroline Flaubert). Celle-
ci ne répondit pas en prenant en
compte la corrélation entre la res-
ponsabilité de diriger un navire
jaugeant 200 tonneaux et l’avancée
de la carrière du capitaine.

“À travers l’espace feuilleté des
vingt-sept pairs, Faustroll évoqua vers
la troisième dimension :
De Baudelaire, le Silence d’Edgard
Poë, en ayant soin de retraduire en
grec la traduction de Baudelaire.

— Alfred Jarry, Gestes et opi-
nions du docteur Faustroll
(1911)

Meta-résumé Détecter les relations exprimées dans un texte est un pro-
blème fondamental de la compréhension du langage naturel. Il constitue
un pont entre deux approches historiquement distinctes de l’intelligence
artificielle, celles à base de représentations symboliques et distribuées. Ce-
pendant, aborder ce problème sans supervision humaine pose plusieurs
problèmes et les modèles non supervisés ont des difficultés à faire écho
aux avancées des modèles supervisés. Cette thèse aborde deux lacunes des
approches non supervisées : le problème de la régularisation des modèles
discriminatifs et le problème d’exploitation des informations relationnelles
à partir des structures des jeux de données. La première lacune découle
de l’utilisation de réseaux neuronaux profonds. Ces modèles ont tendance
à s’effondrer sans supervision. Pour éviter ce problème, nous introduisons
deux fonctions de coût sur la distribution des relations pour contraindre
le classifieur dans un état entraînable. La deuxième lacune découle du
développement des approches au niveau des jeux de données. Nous mon-
trons que les modèles non supervisés peuvent tirer parti d’informations
issues de la structure des jeux de données, de manière encore plus décisive
que les modèles supervisés. Nous exploitons ces structures en adaptant
les méthodes non supervisées existantes pour capturer les informations
topologiques à l’aide de réseaux convolutifs pour graphes. De plus, nous
montrons que nous pouvons exploiter l’information mutuelle entre les don-
nées topologiques et linguistiques pour concevoir un nouveau paradigme
d’entraînement pour l’extraction non supervisée de relations.

Le chat du Cheshire de Tenniel (1889)
vous fournit une expérience de félinité.

Le monde est doté d’une structure, qui nous permet de le comprendre.
Cette structure est en premier lieu apparente à travers la répétition de nos
expériences sensorielles. Parfois, nous voyons un chat, puis un autre chat.
Les entités émergent de la répétition de l’expérience de félinité que nous
avons ressentie. De temps en temps, nous pouvons également observer un
chat à l’intérieur d’un carton ou une personne à l’intérieur d’une pièce. Les
relations sont le mécanisme explicatif qui sous-tend ce deuxième type de
répétition. Une relation régit une interaction entre au moins deux objets.
Nous supposons qu’une relation à l’intérieur existe parce que nous avons
vécu à plusieurs reprises la même interaction entre un conteneur et son
contenu. Le vingtième siècle a été traversé par le développement du struc-
turalisme, qui considérait que les interrelations entre phénomènes étaient
plus éclairantes que l’étude des phénomènes pris isolément. En d’autres
termes, nous pourrions mieux comprendre ce qu’est un chat en étudiant
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ses relations avec d’autres entités plutôt qu’en énumérant les caractéris-
tiques de notre expérience de la félinité. De ce point de vue, le concept de
relation est crucial dans notre compréhension du monde.

Les relations — quoique dans un sens
plus restreint — sont l’un des dix prédi-
caments d’Aristote, les catégories d’ob-
jets d’appréhension humaine (Gracia
et Newton 2016).

Les langues naturelles saisissent la structure sous-jacente de ces répé-
titions à travers un processus que nous ne comprenons pas entièrement.
L’un des objectifs de l’intelligence artificielle, appelé compréhension du
langage naturel, est d’imiter ce processus à l’aide d’algorithmes. Puisque
ce but nous échappe encore, nous nous efforçons d’en modéliser seulement
des parties. Cette thèse, suivant la perspective structuraliste, se concentre
sur l’extraction des relations véhiculées par la langue naturelle. En suppo-
sant que la langue naturelle est représentative de la structure sous-jacente
des expériences sensorielles,95 nous devrions être en mesure de capturer les 95 Les répétitions d’expériences senso-

rielles et de mots n’ont pas à être né-
cessairement identiques. Nous ne nous
préoccupons ici que de la possibilité de
résoudre les références. Même si nos ex-
périences d’arbres s’accompagnent gé-
néralement d’expériences d’écorces, les
mots « arbre » et « écorce » ne cooccur-
rent pas aussi souvent dans des expres-
sions en langue naturelle. Cependant,
leur relation méronymique est intelli-
gible à la fois par l’expérience d’arbres
et, entre autres, par l’utilisation de la
préposition « de » dans les mentions
écrites d’écorces.

relations en exploitant uniquement les répétitions, c’est-à-dire de manière
non supervisée.

A.1 Contexte
L’extraction de relations peut nous aider à mieux comprendre le fonction-
nement des langues. Par exemple, la question de savoir s’il est possible
d’apprendre une langue à partir d’une petite quantité de données reste
une question ouverte en linguistique. L’argument de la pauvreté du sti-
mulus affirme que les enfants ne devraient pas être capable d’acquérir des
compétences linguistiques en étant exposés à si peu de données.96 Il s’agit 96 Ce qui impliquerait qu’une partie de

la maîtrise du langage est innée.de l’un des principaux arguments en faveur de la théorie controversée de
la grammaire universelle. Capturer des relations à partir de rien d’autre
qu’un petit nombre d’expressions en langue naturelle serait un premier
pas vers la réfutation de l’argument de la pauvreté du stimulus.

Ce type de motivation derrière le problème d’extraction de relations
cherche à avancer l’épistémè.97 Cependant, la plupart des avancées sur 97 Du grec ancien ἐπιστήμη : connais-

sance, savoir.cette tâche découlent d’une recherche de technè.98 L’objectif final est de
98 Du grec ancien τέχνη : technique, art.construire un système ayant des applications dans le monde réel. Dans

cette perspective, l’intelligence artificielle a pour but de remplacer ou d’as-
sister les humains dans des tâches spécifiques. La plupart des tâches né-
cessitent une certaine forme de connaissances techniques (par exemple,
le diagnostic médical nécessite la connaissance des relations entre symp-
tômes et maladies). Le principal vecteur de connaissances est le langage
(par exemple, à travers l’éducation). Ainsi, l’acquisition de connaissances
à partir d’énoncés en langue naturelle est un problème fondamental pour
les systèmes destinés à avoir des applications concrètes.

Alex et al. (2008) présentent une analyse de l’impact des systèmes Alex et al., “Assisted curation : does
text mining really help ?” psb 2008d’extraction de connaissances à partir de textes sur un problème concret.

Leur article montre que les annotateurs humains peuvent utiliser un sys-
tème d’apprentissage automatique pour mieux extraire un ensemble d’in-
teractions protéine–protéine de la littérature biomédicale. Il s’agit clai-
rement d’une recherche de technè : les interactions protéine–protéine ne
sont pas de nouvelles connaissances, elles sont déjà publiées ; cependant,
le système améliore le travail de l’opérateur humain.

Cet exemple d’application est révélateur du problème plus vaste de
l’explosion informationnelle. La quantité d’informations publiées n’a cessé
de croître au cours des dernières décennies. L’apprentissage automatique
peut être utilisé pour filtrer ou agréger cette grande quantité de données.
Pour ce genre de tâches, l’objet d’intérêt n’est pas le texte en lui-même

https://psb.stanford.edu/psb-online/proceedings/psb08/alex.pdf
https://psb.stanford.edu/psb-online/proceedings/psb08/alex.pdf
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mais la sémantique véhiculée, sa signification. Une question se pose alors :
comment définir la sémantique que l’on cherche à traiter ? En effet, la
définition du concept de « sens » fait l’objet de nombreuses discussions
dans la communauté philosophique. Bien que certains sceptiques, comme
Quine, ne reconnaissent pas le sens comme un concept essentiel, ils es-
timent qu’une description minimale du sens devrait au moins englober la
reconnaissance de la synonymie. Cela fait suite à la discussion ci-dessus
sur la reconnaissance des répétitions : si est une répétition de , nous
devrions pouvoir dire que et sont synonymes. En pratique, cela im-
plique que nous devrions être en mesure d’extraire des classes de formes
linguistiques ayant la même signification ou le même référent — la diffé-
rence entre les deux n’est pas pertinente pour notre problème.

Paris (Q162121) n’est ni la capitale de
la France, ni le prince de Troie, c’est le
genre de la parisette à quatre feuilles.
La capitale de la France est Paris (Q90)
et le prince de Troie, fils de Priam,
Pâris (Q167646). Illustration tirée de
Redouté (1802).

“La signification, c’est ce que de-
vient l’essence, une fois divorcée d’avec
l’objet de la référence et remariée au
mot.

— Willard Van Orman Quine,
“Main Trends in Recent Philo-
sophy : Two Dogmas of Empi-
ricism” (1951)

Traduction de Laugier (2004)

Bien que la discussion au sujet du sens soit essentielle pour définir la
notion de relation qui nous intéresse, il est important de noter que nous
travaillons sur la langue naturelle ; nous voulons extraire des relations à
partir de textes, et non de répétitions d’entités abstraites. Pourtant, la
correspondance entre les signifiants linguistiques et leur signification n’est
pas bijective. Nous pouvons distinguer deux types de désalignement entre
les deux : soit deux expressions renvoient au même objet (synonymie), soit
la même expression renvoie à des objets différents selon le contexte dans
lequel elle apparaît (homonymie). La première variété de désalignement est
la plus courante, surtout au niveau de la phrase. Par exemple, « Paris est
la capitale de la France » et « la capitale de la France est Paris » véhiculent
le même sens malgré des formes écrites et orales différentes. Au contraire,
le second type est principalement visible au niveau des mots. Par exemple,
la préposition « de » dans les phrases « frémir de peur » et « Bellérophon
de Corinthe » traduit soit une relation causé par soit une relation né à.
Pour distinguer ces deux utilisations de « de, » nous pouvons utiliser des
identifiants de relation tels que P828 pour causé par et P19 pour né à. Un
exemple avec des identifiants d’entités — qui ont pour but d’identifier de
manière unique les concepts d’entité — est donné dans la marge.

Alors que la discussion qui précède donne l’impression que tous les
objets s’inscrivent parfaitement dans des concepts clairement définis, en
pratique, c’est loin d’être le cas. Très tôt dans la littérature de la représen-
tation des connaissances, Brachman (1983) a remarqué la difficulté de Brachman, “What is-a Is and Isn’t :

An Analysis of Taxonomic Links in Se-
mantic Networks” Computer 1983

définir clairement des relations apparemment simples telles que instance de
(P31). Ce problème découle de l’hypothèse selon laquelle la synonymie est
transitive et, par conséquent, induit des classes d’équivalence. Cette hypo-
thèse est assez naturelle puisqu’elle s’applique déjà au lien entre le langage
et ses références : même si deux chats peuvent être très différents l’un de
l’autre, nous les regroupons sous le même signifiant. Cependant, la langue
naturelle est flexible. Lorsque nous essayons de capturer l’entité « chat, »
il n’est pas tout à fait clair si nous incluons « un chat avec le corps d’une
tarte aux cerises » dans les expériences ordinaires de chat.99

99 Le lecteur qui décrirait une telle en-
tité comme étant un chat est invité à
remplacer diverses parties du corps de
ce chat imaginaire par des aliments jus-
qu’à ce que cesse son expérience de fé-
linité.

Pour contour-
ner ce problème, certains travaux récents sur le problème d’extraction de
relations (Han et al. 2018) définissent la synonymie comme une associa- Han et al., “FewRel : A Large-Scale

Supervised Few-Shot Relation Classi-
fication Dataset with State-of-the-Art
Evaluation” emnlp 2018

tion continue intransitive. Au lieu de regrouper les formes linguistiques
dans des classes bien définies partageant un sens unique, ils extraient une
fonction de similarité mesurant la ressemblance de deux objets.

Maintenant que nous avons conceptualisé notre problème, concentrons-
nous sur l’approche technique que nous proposons. Tout d’abord, pour
résumer, cette thèse se concentre sur l’extraction non supervisée de re-
lations à partir de textes.100

100 Nous utilisons le texte car il s’agit
de l’expression la moins ambiguë et la
plus facile à traiter de la langue.Les relations étant des objets capturant les

https://www.wikidata.org/wiki/Q162121
https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q167646
https://www.wikidata.org/wiki/Property:P828
https://www.wikidata.org/wiki/Property:P19
https://doi.ieeecomputersociety.org/10.1109/MC.1983.1654194
https://doi.ieeecomputersociety.org/10.1109/MC.1983.1654194
https://doi.ieeecomputersociety.org/10.1109/MC.1983.1654194
https://www.wikidata.org/wiki/Property:P31
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
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interactions entre les entités, notre tâche est de trouver la relation reliant
deux entités données dans un texte. Par exemple, dans les trois exemples
suivants où les entités sont soulignées : Nous utilisons les identifiants Wikidata

(https://www.wikidata.org) pour in-
dexer les entités et les relations. Les
identifiants des entités commencent
par Q, tandis que les identifiants
des relations commencent par P. Par
exemple, Q35120 est une entité.

Ariane se réveille sur le rivage de Naxos
où elle a été abandonnée, peinture mu-
rale d’Herculanum dans la collection
du British Museum (100 av. n. è.-
100 de n. è.). Le navire au loin peut
être identifié comme étant le bateau
de Thésée, pour l’instant. Selon le
point de vue philosophique du lecteur
(Q1050837), son identité en tant que
bateau de Thésée pourrait ne pas per-
durer.

Megrez𝑒1
est une étoile de la constellation circumpolaire nord

de la Grande Ourse𝑒2
.

Posidonios𝑒1
était un philosophe, astronome, historien, ma-

thématicien et professeur grec originaire d’Apamée𝑒2
.

Hipparque𝑒1
est né à Nicée𝑒2

, et est probablement mort sur
l’île de Rhodes, en Grèce.

nous souhaitons reconnaître que les deux dernières phrases véhiculent la
même relation — dans ce cas, 𝑒1 né à 𝑒2 (P19) — ou du moins, suivant la
discussion du paragraphe précédent sur la difficulté de définir des classes de
relations, nous voulons reconnaître que les relations exprimées par les deux
derniers échantillons sont plus proches l’une de l’autre que celle exprimée
par le premier échantillon. Nous avançons que cela peut être réalisé par des
algorithmes d’apprentissage automatique. En particulier, nous étudions
comment aborder cette tâche en utilisant l’apprentissage profond. Bien
que l’extraction de relations puisse être abordée comme un problème de
classification supervisée standard, l’étiquetage d’un jeu de données avec
des relations précises est une tâche fastidieuse, en particulier lorsque l’on
traite des documents techniques tels que la littérature biomédicale étudiée
par Alex et al. (2008). Un autre problème fréquemment rencontré par les
annotateurs est la question de l’applicabilité d’une relation, par exemple,
l’expression « le père𝑒2

fondateur du pays𝑒1
» doit-elle être étiquetée avec

la relation produit–producteur ?101 Nous examinons maintenant comment

101 L’annotateur de ce morceau de
phrase dans le jeu de données SemE-
val 2010 Task 8 a considéré qu’il expri-
mait effectivement la relation produit–
producteur. La difficulté d’appliquer
précisément une définition est un ar-
gument supplémentaire en faveur des
approches basées sur les fonctions de
similarité par rapport aux approches
de classification.

l’apprentissage profond est devenu la technique la plus prometteuse pour
s’attaquer aux problèmes de traitement de la langue naturelle.

La matière première du problème d’extraction de relations est le lan-
gage. Le traitement automatique de la langue naturelle (tal)102 était déjà

102 natural language processing (nlp)

une direction de recherche importante dans les premières années de l’intel-
ligence artificielle. On peut le voir du point de vue épistémè dans l’article
fondateur de Turing (1950). Cet article propose la maîtrise du langage

Turing, “Computing Machinery and
Intelligence” Mind 1950

comme preuve d’intelligence, dans ce qui est maintenant connu sous le nom
de test de Turing. La langue était également un sujet d’intérêt pour des ob-
jectifs de technè. En janvier 1954, l’expérience de Georgetown–ibm tente
de démontrer la possibilité de traduire le russe en anglais à l’aide d’or-
dinateurs (Dostert 1955). L’expérience proposait de traduire soixante
phrases en utilisant un dictionnaire bilingue pour traduire individuelle-
ment les mots et six types de règles grammaticales pour les réorganiser.
Les premières expériences ont suscité beaucoup d’attentes, qui ont été sui-
vies d’une inévitable déception, entraînant un « hiver » durant lequel les
fonds attribués à la recherche en intelligence artificielle ont été restreints. Si
la traduction mot à mot est assez facile dans la plupart des cas, la traduc-
tion de phrases entières est beaucoup plus difficile. La mise à l’échelle de
l’ensemble des règles grammaticales dans l’expérience de Georgetown–ibm
s’est avérée impraticable. Cette limitation n’était pas d’ordre technique.
Avec l’amélioration des systèmes de calcul, davantage de règles auraient
pu facilement être codées. L’un des problèmes identifiés à l’époque était
celui de la compréhension du sens commun.103

103 commonsense knowledge

Pour traduire ou, plus gé-
néralement, traiter une phrase, il faut la comprendre dans le contexte du
monde dans lequel elle a été prononcée. De simples règles de réécriture ne
peuvent pas rendre compte de ce processus.104

104 Par ailleurs, la grammaire est
encore un domaine de recherche ac-
tif. Nous ne comprenons pas parfai-
tement la réalité sous-jacente captu-
rée par la plupart des mots et sommes
donc incapables d’écrire des règles for-
melles complètes pour leurs usages.
Par exemple, Marque-Pucheu (2008)
présente un article de linguistique trai-
tant de l’utilisation des prépositions
françaises « de » et « à. » C’est l’un des
arguments en faveur des approches non
supervisées ; en évitant d’étiqueter ma-
nuellement les jeux de données, nous
évitons la limite des connaissances des
annotateurs humains.Pour pouvoir traiter des

https://www.wikidata.org
https://www.wikidata.org/wiki/Q35120
https://www.wikidata.org/wiki/Q1050837
https://www.wikidata.org/wiki/Property:P19
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
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phrases entières, un changement de paradigme était nécessaire.
Une première évolution a eu lieu dans les années 1990 avec l’avènement

des approches statistiques (S. Abney 1996). Ce changement peut être at-
tribué en partie à l’augmentation de la puissance de calcul, mais aussi à
l’abandon progressif de préceptes linguistique essentialistes au profit de
préceptes distributionnalistes.105 Au lieu de s’appuyer sur des experts hu- 105 Noam Chomsky, l’un des lin-

guistes essentialistes les plus impor-
tants, considère que la manipulation
de probabilités d’extraits de texte ne
permet pas d’acquérir une meilleure
compréhension du langage. Suite au
succès des approches statistiques, il
n’a reconnu qu’un accomplissement de
technè et non d’épistémè. Pour une ré-
ponse à cette position, voir S. Abney
(1996) et Norvig (2011).

mains pour concevoir un ensemble de règles, les approches statistiques
exploitent les répétitions dans de grands corpus de textes pour déduire
ces règles automatiquement. Par conséquent, cette progression peut égale-
ment être considérée comme une transformation des modèles d’intelligence
artificielle symbolique vers des modèles statistiques. La tâche d’extraction
de relations a été formalisée à cette époque. Et si les premières approches
étaient basées sur des modèles symboliques utilisant des règles prédéfi-
nies, les méthodes statistiques sont rapidement devenues la norme après
les années 1990. Cependant, ces modèles statistiques reposaient toujours
sur des connaissances linguistiques. Les systèmes d’extraction de relations “Cheval blanc n’est pas cheval.

— “Gongsun Longzi” Cha-
pitre 2 (circa 300 av. n. è.)

﹁
白
馬
非
馬
﹂Un paradoxe bien connu de la phi-

losophie chinoise illustrant la diffi-
culté de définir clairement le sens
véhiculé par la langue naturelle.
Ce paradoxe peut être résolu en
désambiguïsant le mot « cheval. »
Fait-il référence à « l’ensemble de
tous les chevaux » (la vision mé-
réologique) ou à « la chevalité » (la
vision platonicienne) ? L’interpré-
tation méréologique a été célèbre-
ment — et de manière controversée
— introduite par Hansen (1983),
voir Fraser (2007) pour une dis-
cussion des premières vues ontolo-
giques du langage en Chine.

étaient généralement divisés en une première phase d’extraction de carac-
téristiques linguistiques spécifiées à la main et une seconde phase où une
relation était prédite à partir de ces caractéristiques à l’aide de modèles
statistiques peu profonds.

Une deuxième évolution est survenue dans les années 2010 lorsque les
approches d’apprentissage profond ont effacé la séparation entre les phases
d’extraction de caractéristiques et de prédiction. Les modèles d’apprentis-
sage profond sont entrainés pour traiter directement les données brutes,
dans notre cas des extraits de texte. À cette fin, des réseaux de neurones
capables d’approcher n’importe quelle fonction sont utilisés. Cependant,
l’entraînement de ces modèles nécessite généralement de grandes quantités
de données étiquetées. Il s’agit d’un problème particulièrement important
pour nous puisque nous traitons un problème non supervisé. En tant que
technique la plus récente et la plus efficace, l’apprentissage profond est
un choix naturel pour s’attaquer à l’extraction de relations. Cependant,
ce choix s’accompagne de problématiques que nous essayons de résoudre
dans ce manuscrit.

Frontispice de la bibliothèque OuCui-
Pienne par Chevalier (1990). Une
autre façon de cuisiner avec les lettres.

A.2 Régularisation des modèles discriminatifs
d’extraction non supervisée de relations

L’évolution des méthodes d’extraction de relations non supervisées suit
de près celle des méthodes de tal décrite ci-dessus. La première ap-
proche utilisant des techniques d’apprentissage profond a été celle de
Marcheggiani et Titov (2016). Cependant, une partie de leur modèle
reposait toujours sur des caractéristiques linguistiques extraites en amont.
La raison pour laquelle cette extraction ne pouvait pas être faite automa-
tiquement, comme c’est habituellement le cas en apprentissage profond,
est étroitement liée à la nature non supervisée du problème. Notre pre-
mière contribution est de proposer une technique permettant l’entraîne-
ment d’approches d’extraction non supervisée de relations par apprentis-
sage profond.

Nous avons identifié deux problèmes critiques des modèles discrimi-
nants existant qui entravent l’utilisation de réseaux neuronaux profonds
pour l’extraction de caractéristiques. Ces problèmes concernent la sortie
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du classifieur, qui a tendance à s’effondrer en une distribution triviale, soit Cette section a fait l’objet d’une publi-
cation :
Étienne Simon, Vincent Guigue, Ben-
jamin Piwowarski. “Unsupervised In-
formation Extraction : Regularizing
Discriminative Approaches with Rela-
tion Distribution Losses” acl 2019

déterministe, soit uniforme. Nous proposons d’introduire deux fonctions
de coût sur la distribution des relations pour atténuer ces problèmes :
une fonction d’asymétrie éloigne la prédiction d’une loi uniforme, et une
distance de distributions empêche la sortie de s’effondrer vers une distribu-
tion déterministe. Cela nous a permis d’entraîner un modèle pcnn (Zeng
et al. 2015) pour regrouper les échantillons non supervisés en partitions106 Zeng et al., “Distant Supervision

for Relation Extraction via Piece-
wise Convolutional Neural Networks”
emnlp 2015
106 clusters

véhiculant la même relation.

Distribution dégénérée :

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮

Distribution désirée :

𝑃(r ∣ 𝑠1) =

𝑃(r ∣ 𝑠2) =

𝑃(r ∣ 𝑠3) =

𝑃(r ∣ 𝑠4) =

⋮

Figure A.1 : Illustration du problème
d’uniformité. Le classifieur attribue la
même probabilité à toutes les relations.
À la place, nous souhaitons que le clas-
sifieur prédise clairement une relation
unique pour chaque échantillon.

Modèle B3𝐹1
Classif. Reg.

Linear ℒvae reg 35,2
pcnn ℒvae reg 27,6

Linear ℒs + ℒd 37,5
pcnn ℒs + ℒd 39,4

Table A.1 : Résultats quantitatifs des
méthodes de partitionnement sur le jeu
de données nyt-fb. On distingue le
classifieur utilisé (Classif.) de la régu-
larisation utilisée (Reg.). La régularisa-
tion ℒvae reg est celle issue de l’article
de Marcheggiani et Titov (2016).

Notre approche se base sur le problème de remplissage de texte à trous :
“Le sol𝑒1

a été la monnaie du ? 𝑒2
entre 1863 et 1985.”

Pour pouvoir remplir cette phrase avec le mot manquant, il est nécessaire
de comprendre la relation véhiculée. Nous utilisons cette tâche comme un
substitut nous permettant d’identifier la sémantique relationnelle de la
phrase. Étant donné une phrase 𝑠 contenant deux entités 𝒆 exprimant la
relation 𝑟, nous modélisons la probabilité suivante :

𝑃(𝑒−𝑖 ∣ 𝑠, 𝑒𝑖) = ∑
𝑟∈ℛ

𝑃(𝑟 ∣ 𝑠)⏟
(i) classifieur

𝑃(𝑒−𝑖 ∣ 𝑟, 𝑒𝑖)⏟⏟⏟⏟⏟
(ii) prédicteur d’entité

pour 𝑖 = 1, 2.

Nous utilisons un réseau profond (pcnn, Zeng et al. 2015) pour le clas-
sifieur et le même modèle que Marcheggiani et Titov (2016) pour la
prédiction d’entité. Le modèle résultant présente des instabilités, comme
celle illustrée par la Figure A.1. Nous proposons deux fonctions de coût
supplémentaires sur les paramètres 𝝓 du classifieur pour résoudre ces pro-
blèmes :

ℒs(𝝓) = 𝔼
(𝑠,𝒆)∼𝒰(𝒟)

[H(R ∣ 𝑠, 𝒆; 𝝓)]

ℒd(𝝓) = Dkl(𝑃 (R ∣ 𝝓) ‖ 𝒰(ℛ)).

La première fonction force la sortie du classifieur a avoir une entropie
faible ce qui résout le problème de la Figure A.1. La seconde fonction s’as-
sure qu’une variété de relations soient prédites pour différents échantillons.
Ces deux fonctions nous permettent d’entrainer un réseau profond pour
l’extraction non supervisée de relations comme le montrent les scores de
la Table A.1.

A.3 Modélisation à l’aide de graphes de la
structure des jeux de données

Comme mentionné dans la Section A.1, les approches récentes utilisent
une définition plus souple des relations en extrayant une fonction de simi-
larité au lieu d’un classifieur. De plus, elles considèrent un contexte plus
large : au lieu de traiter chaque phrase individuellement, la cohérence glo-
bale des relations extraites est prise en compte. Cependant, ce deuxième
type d’approches a principalement été appliqué au cadre supervisé, avec
une utilisation plus limitée dans le cadre non supervisé. Notre deuxième
contribution concerne l’utilisation de ce contexte plus large pour l’extrac-
tion non supervisée de relations. En particulier, nous établissons des pa-
rallèles avec le test d’isomorphisme de Weisfeiler–Leman pour concevoir
de nouvelles méthodes utilisant conjointement des caractéristiques topo-
logiques (au niveau des jeux de données) et linguistiques (au niveau des
phrases).

https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://www.aclweb.org/anthology/P19-1133
https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
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Nous encodons le problème d’extraction de relations comme un pro-
blème d’étiquetage d’un multigraphe 𝐺 = (ℰ,𝒜, 𝜺, 𝜌, 𝜍) défini comme suit :

• ℰ est l’ensemble des nœuds qui correspondent aux entités.
• 𝒜 est l’ensemble des arcs qui connectent deux entités.
• 𝜀1 ∶ 𝒜 → ℰ associe à chaque arc son nœud d’origine (l’entité marquée

𝑒1),
• 𝜀2 ∶ 𝒜 → ℰ associe à chaque arc son nœud de destination (l’entité

marquée 𝑒2),
• 𝜍 ∶ 𝒜 → 𝒮 associe à chaque arc 𝑎 ∈ 𝒜 la phrase correspondante

contenant 𝜀1(𝑎) et 𝜀2(𝑎),
• 𝜌 ∶ 𝒜 → ℛ associe à chaque arc 𝑎 ∈ 𝒜 la relation entre les deux

entités véhiculée par 𝜍(𝑎).
Étant donné un chemin dans ce graphe :

e1 e2 e3 e4,
r1 r2 r3

nous avons conçu un algorithme de comptage basé sur l’exponentiation de
la matrice d’adjacence de 𝐺 et sur un échantillonnage préférentiel107 qui 107 importance sampling
nous permet d’approcher l’information mutuelle I(r2; r1, r3) ≈ 6,95 bits.
Elle se décompose en une entropie conditionnelle H(r2 ∣ r1, r3) ≈ 1,06 bits
soustrait à l’entropie croisée108 𝔼𝑟1,𝑟3

[H𝑃(r2)(r2 ∣ 𝑟1, 𝑟3)] ≈ 8,01 bits. Cela 108 cross-entropy
signifie que la majeure partie de l’information relationnelle est extractible
à partir du voisinage dans le graphe 𝐺.

1 2

3 4

5 6

7 8

𝑎 𝑑

𝑏 𝑐

𝑒 ℎ

𝑓 𝑔

Figure A.2 : Exemple de graphes
isomorphes. Chaque nœud 𝑖 dans le
graphe de gauche correspond à la 𝑖-
ième lettre de l’alphabet dans le graphe
de gauche. Par ailleurs, ces graphes
contiennent des automorphismes non-
triviaux, par exemple en associant le
nœud 𝑖 au nœud 9 − 𝑖.

Fort de cette observation, nous utilisons l’hypothèse suivante pour
concevoir un nouveau paradigme pour l’extraction non supervisée de re-
lations :
Hypothèse distributionnelle faible sur le graphe d’extraction de
relations. Deux arcs véhiculent des relations similaires s’ils ont des voi-
sinages similaires.
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Figure A.3 : Schéma de bert (Devlin
et al. 2019), un modèle de langue mas-
qué basé sur un transformer. Le mo-
dèle est entrainé à reconstruire des
mots �̂�𝑡 corrompus en �̃�𝑡 (plongés en
�̃�𝑡). bertcoder est une spécialisation
de ce modèle pour l’extraction de rela-
tions (Soares et al. 2019).

Kipf et Welling (2017) ont déjà tracé
un parallèle entre wl et les approches à
base de réseaux neuronaux convolutifs
pour graphes (gcn). Toutefois, nous
avançons que les fonctions d’apprentis-
sage habituellement utilisées pour les
gcn ne sont pas adaptées au problème
d’extraction non supervisée de rela-
tions.

Pour exploiter cette information de voisinage présente dans la topolo-
gie du multigraphe 𝐺, nous proposons de nous inspirer du test d’isomor-
phisme de Weisfeiler–Leman (wl, Weisfeiler et Leman 1968). Deux
graphes sont dits isomorphes s’il existe un morphisme entre leur som-
mets qui conserve la relation de voisinage. Ce concept est illustré par la
Figure A.2. Nous pouvons donc traduire l’hypothèse ci-dessus par l’affir-
mation que si les voisinages de deux échantillons sont isomorphes, alors ces
deux échantillons véhiculent la même relation. Pour évaluer la proximité de
deux voisinages, nous définissons 𝔖 (𝑎, 𝑘), le plongement par bertcoder
(voir Figure A.3) de la sphère de rayon 𝑘 autour de l’arête 𝑎 ∈ 𝒜 comme :

𝑆 (𝑎, 0) = { 𝑎 }
𝑆 (𝑎, 𝑘) = {𝑥 ∈ 𝒜 ∣ ∃𝑦 ∈ 𝑆 (𝑎, 𝑘 − 1) ∶ 𝜀1(𝑥) = 𝜀2(𝑦) }
𝔖 (𝑎, 𝑘) = {bertcoder(𝜍(𝑥)) ∈ ℝ𝑑 ∣ 𝑥 ∈ 𝑆 (𝑎, 𝑘) }.

Ces sphères correspondent au voisinage à distance 𝑘. À partir de celles-
ci, nous pouvons définir une fonction de distance prenant en compte le
voisinage jusqu’à une distance 𝐾 :

𝑑(𝑎, 𝑎′; 𝝀) =
𝐾

∑
𝑘=0

𝜆𝑘
2

∑
𝑜∈{ , }

𝑊1 (𝔖𝑜(𝑎, 𝑘),𝔖𝑜(𝑎′, 𝑘)) ,

où 𝑊1 désigne la distance de Wasserstein d’ordre 1. En particulier, cette
fonction évaluée en 𝝀 = [1] correspond à la distance habituelle entre plon-
gements de phrases modulo l’utilisation de 𝑊1 à la place d’une distance
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cosinus. Pour des raisons de limites de calcul, nous fixons 𝐾 = 2. Dans ce
cas, 𝑑(𝑎1, 𝑎2, [1, 0]𝖳) correspond à la distance linguistique entre deux échan-
tillons 𝑎1, 𝑎2 ∈ 𝒜, tandis que 𝑑(𝑎1, 𝑎2, [0, 1]𝖳) correspond à la distance to-
pologique entre les voisinages des échantillons 𝑎1 et 𝑎2. Nous proposons de
faire coïncider ces deux distances pour tirer parti de l’information mutuelle
au voisinage et à la phrase afin d’identifier la sémantique relationnelle des
échantillons. Pour ce faire, nous introduisons une fonction de coût par
triplet :109 109 triplet loss

ℒlt(𝑎1, 𝑎2, 𝑎3) = max
⎛⎜⎜⎜
⎝

0, 𝜁 + 2(𝑑(𝑎1, 𝑎2, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎2, [0, 1]𝖳))
2

− (𝑑(𝑎1, 𝑎2, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎3, [0, 1]𝖳))
2

− (𝑑(𝑎1, 𝑎3, [1, 0]𝖳) − 𝑑(𝑎1, 𝑎2, [0, 1]𝖳))
2

⎞⎟⎟⎟
⎠

.

Modèle Précision

Linguistique (bert) 69,46
Topologique (𝑊1) 65,75
Tous les deux 72,18

Table A.2 : Résultats quantitatifs des
méthodes à base de graphe sur le jeu
de données FewRel (Han et al. 2018).
Ces résultats portent uniquement sur
les échantillons de FewRel connectés
par au moins une arête dans le graphe
𝐺 du jeu de données t-rex.

Des résultats préliminaires sur l’utilisation d’informations topologiques
sont donnés dans la Table A.2. Comme on pouvait s’y attendre, l’infor-
mation relationnelle encodée dans le voisinage d’ordre 1 du graphe est
moindre que celle directement contenue dans la phrase. Toutefois, ces in-
formations peuvent être combinées ce qui permet d’améliorer significati-
vement la performance du modèle d’extraction de relation.

A.4 Conclusion
Pendant ma candidature au doctorat, je me suis—principalement110—con- 110 Avec la distraction occasionnelle—

et profondément appréciée—de Sy-
rielle Montariol sur d’autres projets de
tal (Montariol et al. 2022).

centré sur l’étude de l’extraction non supervisée de relations. Dans cette
tâche, étant donné un ensemble de phrases et de paires d’entités, nous
recherchons l’ensemble des faits véhiculés (𝑒1, 𝑟, 𝑒2), tels que 𝑟 exprime la
relation entre 𝑒1 et 𝑒2 dans un échantillon. Pour mener à bien cette tâche,
nous avons suivi deux axes de recherche principaux : premièrement, la
question de savoir comment entraîner un réseau neuronal profond pour
l’extraction non supervisée de relations ; deuxièmement, la question de
savoir comment tirer parti de la structure d’un ensemble de données pour
obtenir des informations supplémentaires pour la tâche d’extraction de
relations sans supervision.

Plus grossièrement, nous avons d’abord aidé au développement d’ap-
proches d’apprentissage profond pour la tâche d’extraction non supervisée
de relations, puis contribué à ouvrir une nouvelle direction de recherche
sur les approches au niveau des jeux de données dans la configuration non
supervisée utilisant des modèles basés sur des graphes. Ces deux objets de
recherche étaient en quelque sorte des développements naturels suivant les
tendances actuelles de la recherche en apprentissage automatique.
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Appendix B

List of Assumptions

Modeling hypotheses are central to relation extraction approaches, espe-
cially unsupervised ones (see Chapter 2). This appendix list all assump-
tions introduced in the previous chapters in alphabetical order, with ref-
erence to the section in which it was introduced, and whenever possible
a counterexample exposing what kind of construct cannot be captured by
making this hypothesis.

Assumption ℋ1 → 1: All relations are one-to-one.
∀𝑟 ∈ ℛ∶ 𝑟 • ̆𝑟 ∪ 𝑰 = ̆𝑟 • 𝑟 ∪ 𝑰 = 𝑰

1 → 1

Appeared Section 2.5.6.
Counterexample: “Josetsu born in Kyushu” and “Minamoto no Shunrai
born in Kyushu.”

Assumption ℋ1-adjacency: There is no more than one relation linking any
two entities.
∀𝑟1, 𝑟2 ∈ ℛ∶ 𝑟1 ∩ 𝑟2 = 𝟎

1-adjacency

Appeared Section 2.3.2.
Counterexample: “Khayyam born in Nishapur” and “Khayyam died in
Nishapur.”

Assumption ℋ1-neighborhood: Two samples with the same neighborhood
in the relation extraction graph convey the same relation.
∀𝑎, 𝑎′ ∈ 𝒜∶ 𝒩(𝑎) = 𝒩(𝑎′) ⟹ 𝜌(𝑎) = 𝜌(𝑎′)

1-neighborhood

Appeared Section 4.4.3.
Counterexample: born in and died in. Since the arc-neighborhood 𝒩 is
split between in-and out-neighborhood, this hypothesis is close to ℋtype.
The main difference being that the partitions (types) of ℋtype can’t over-
lap. While a relation which can have any type as a subject can’t be mod-
eled under the ℋtype hypothesis, it will simply correspond to a distribution
with mass on all entities in the ℋ1-neighborhood assumption.

Assumption ℋbiclique: Given a relation, the entities are independent of
one another: e1 ⟂⟂ e2 ∣ r. In other words, given a relation, all possible head
entities are connected to all possible tail entities.
∀𝑟 ∈ ℛ ∶ ∃𝐴,𝐵 ⊆ ℰ ∶ 𝑟 • ̆𝑟 = 𝟏𝐴 ∧ ̆𝑟 • 𝑟 = 𝟏𝐵

biclique
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Appeared Section 2.5.4.
Counterexample: most relations should infringe this assumption since it is
decomposable into two unary predicates: whether the entity is part of 𝐴
and whether it is part of 𝐵. For example “Alonzo Church died in Hudson”
and “Alan Turing died in Wilmslow” are true but “Alonzo Church died in
Wilmslow” is false.

Assumption ℋblankable: The relation can be predicted by the text sur-
rounding the two entities alone. Formally, using blanked(𝑠) to designate
the tagged sentence 𝑠 ∈ 𝒮 from which the entities surface forms were
removed, we can write:
r ⟂⟂ 𝐞 ∣ blanked(s).

blankable

Appeared Section 3.1.0.
Counterexample: some surface forms are mapped to different relations
depending on the nature of the entities; in FewRel, “ ? 𝑒1

is part of ? 𝑒2
”

can both convey part of and part of constellation.

Assumption ℋctx(1-adjacency): Two samples with the same contextualized
representation of their entities’ surface forms convey the same relation.
∀(𝑠, 𝒆, 𝑟), (𝑠′, 𝒆′, 𝑟′) ∈ 𝒟ℛ ∶

ctx1(𝑠) = ctx1(𝑠′) ∧ ctx2(𝑠) = ctx2(𝑠′) ⟹ 𝑟 = 𝑟′

ctx(1-adjacency)

Appeared Section 2.5.7.
Finding a counterexample for this assumption is quite difficult since it
depends on the operation performed by the contextualization function
ctx. In this sense, it is a weak assumption.

Assumption ℋdistant: A sentence conveys all the possible relations be-
tween all the entities it contains.
𝒟ℛ = 𝒟 ⋈ 𝒟kb

where ⋈ denotes the natural join operator:

𝒟 ⋈ 𝒟kb = { (𝑠, 𝑒1, 𝑒2, 𝑟) ∣ (𝑠, 𝑒1, 𝑒2) ∈ 𝒟 ∧ (𝑒1, 𝑒2, 𝑟) ∈ 𝒟kb } .

distant

Appeared Section 2.2.2.
Counterexample: “Chekhov found himself coughing blood, and in 1886 the
attacks worsened, but he would not admit his tuberculosis to his family
or his friends.” does not convey the fact “Anton Chekhov cause of death
Tuberculosis,” it only conveys “Anton Chekhov has medical condition Tu-
berculosis.”

Assumption ℋmulti-instance: All facts (𝒆, 𝑟) ∈ 𝒟kb are conveyed by at
least one sentence of the unlabeled dataset 𝒟.
∀(𝑒1, 𝑒2, 𝑟) ∈ 𝒟kb ∶ ∃(𝑠, 𝑒1, 𝑒2) ∈ 𝒟 ∶ (𝑠, 𝑒1, 𝑒2) conveys 𝑒1 𝑟 𝑒2

multi-instance

Appeared Section 2.4.2.
Counterexample: Even though “Josetsu born in Kyushu” is present in
Wikidata, at the time of writing, this information is missing from its En-
glish Wikipedia page, thus an alignment of 𝒟 = Wikipedia with 𝒟kb =
Wikidata would not verify ℋmulti-instance.
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Assumption ℋpullback: It is possible to find the relation conveyed by a
sample by looking at the entities alone and ignoring the sentence; and
conversely by looking at the sentence alone and ignoring the entities.
𝒟 = 𝒮×ℛ ℰ2.

pullback

Appeared Section 2.2.1.
Entails ℋ1-adjacency.
Counterexample: Unless the reader is familiar with biographies of early
Chinese philosophers, the relation between Q1362266 “Gongsun Long” and
Q197430 “Zhao” should not be immediately obvious.

Assumption ℋtype: All entities have a unique type, and all relations are
left and right restricted to one of these types.
∃𝒯 partition of ℰ ∶ ∀𝑟 ∈ ℛ ∶ ∃𝑋, 𝑌 ∈ 𝒯 ∶ 𝑟• ̆𝑟∪𝟏𝑋 = 𝟏𝑋 ∧ ̆𝑟 •𝑟∪𝟏𝑌 = 𝟏𝑌

type

Appeared Section 2.5.3.
Counterexample: “Deneb part of Summer Triangle” (type pair: star–con-
stellation) and “Mitochondrion part of Cytoplasm” (type pair: organelle–
cellular component).

Assumption ℋuniform: All relations occur with equal frequency.

∀𝑟 ∈ ℛ∶ 𝑃(𝑟) = 1
|ℛ|

uniform

Appeared Section 2.5.5.
Counterexample: The relation “worshipped by” generally appears quite a
lot less than “place of burial” whether measured through the number of
facts in Wikidata or as the number of sentences conveying these relations
in Wikipedia.

https://www.wikidata.org/wiki/Q1362266
https://www.wikidata.org/wiki/Q197430
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Appendix C

Datasets

In this appendix, we present the primary datasets used throughout this
thesis. Each section corresponds to a dataset or group of datasets. We
focus on the peculiarities which make each dataset unique and provide
some statistics relevant to our task.

C.1 ace
Automatic content extraction (ace) is a nist program that developed sev-
eral datasets for the evaluation of entity chunking and relation extraction.
It is the spiritual successor of muc (Section C.4). In their nomenclature,
the task of relation extraction is called relation detection and categoriza-
tion (rdc). Datasets for relation extraction were released yearly between
2002 and 2005.111 This makes comparison difficult; for example, in Chap- 111 The dataset from September 2002

is called ace-2. This refers to the “sec-
ond phase” of ace. The pilot and first
phase corpora only dealt with entity
detection.

ter 2, we mention an ace dataset for several models (Sections 2.3.4, 2.3.5,
2.4.1 and 2.4.5); however, the versions of the datasets differs.

A peculiarity of the ace dataset is its hierarchy of relations. For exam-
ple, the ace-2003 dataset contains a social relation type, which is divided
into several relation subtypes such as grandparent and sibling. Results can
be reported either on the relation types or subtypes, usually using an 𝐹1
measure or a custom metric designed by ace (Doddington et al. 2004) to Doddington et al., “The automatic

content extraction (ace) program-
tasks, data, and evaluation.” lrec
2004

handle directionality and the “other” relation (Section 2.1.1.1).

C.2 FewRel
FewRel (Han et al. 2018) is a few-shot relation extraction dataset. Given Han et al., “FewRel: A Large-Scale

Supervised Few-Shot Relation Classi-
fication Dataset with State-of-the-Art
Evaluation” emnlp 2018

a query and several candidates, the model must decide which candidate
conveys the relation closest to the one conveyed by the query. Therefore,
FewRel is used to evaluate continuous relation representations; it is not
typically used to evaluate a clustering model. For details on the few-shot
setup, refer to Section 2.5.1.2.

The dataset was first constructed by aligning Wikipedia with Wikidata
(Section C.8) using distant supervision (Section 2.2.2). Human annotators
then hand-labeled the samples. The resulting dataset is perfectly balanced;
all relations are represented by precisely 700 samples. The set of the 100
most common relations with good inter-annotator agreement was then

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/lrec2004-ace-program.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/lrec2004-ace-program.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/lrec2004-ace-program.pdf
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
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divided into three splits, whose sizes are given in Table C.1. Since com-
mon relations were strongly undersampled to obtain a balanced dataset,
entities do not repeat much. The attributed multigraph (Section 4.1) cor-
responding to the train split of FewRel is composed of several connected
components. The larger one covers approximately 21% of the vertices,
while more than half of all vertices are in connected components of size
three or less.

Split Relations Samples

Train 64 44 800
Valid 16 11 200
Test 20 14 000

Table C.1: Statistics of the FewRel
dataset. The test relations and samples
are not publicly available.

FewRel can be used for 𝑛 way 𝑘 shot evaluation, where usually 𝑛 ∈
{5, 10} and 𝑘 ∈ {1, 5}. For reference, Han et al. (2018) provides human
performance on 5 way 1 shot (92.22% accuracy) and 10 way 1 shot (85.88%
accuracy).

A subsequent dataset released by the same team called FewRel 2.0
(Gao et al. 2019) revisited the task by adding two variations: Gao et al., “FewRel 2.0: Towards More

Challenging Few-Shot Relation Classi-
fication” emnlp 2019Domain adaptation, the training set of the original FewRel is used

(Wikipedia–Wikidata), but the model is evaluated on biomedical
literature (PubMed–umls) containing relations such as may treat
and manifestation of.

Detecting other relation, also called none-of-the-above, when the re-
lation conveyed by the query does not appear in the candidates.

While domain adaptation is an interesting problem, for unsupervised ap-
proaches, the detection of other seems to defeat the point of modeling
a similarity space instead of clustering relations. Furthermore, we only
use FewRel as an evaluation tool and never train on it; using this second
dataset made, therefore, little sense.

C.3 Freebase

Freebase (Bollacker et al. 2008) is a knowledge base (Section 1.4) started Bollacker et al., “Freebase: a collabora-
tively created graph database for struc-
turing human knowledge” sigmod 2008

in 2007 and discontinued in 2016. As one of the first widely available

Object Number

Facts 3.1 billion
Entities 195 million
Relations 784 977

Table C.2: Statistics of the Freebase
knowledge base at the time of its ter-
mination. Most relations (around 81%)
appear only once in the knowledge
base.

knowledge bases containing general knowledge, Freebase was widely used
for weak supervision. In particular, it is the knowledge base used in the
original distant supervision article (Mintz et al. 2009). Freebase was a
collaborative knowledge base; as such, its content evolved through its ex-
istence. Therefore, even though Mintz et al. (2009), Yao et al. (2011) and
Marcheggiani and Titov (2016) all run experiments on Freebase, their re-
sults are not comparable since they use different versions of the dataset.
Data dumps are still provided by Google (2016); however, most of the
facts were transferred to the Wikidata knowledge base (Section C.8). Some
statistics about the latest version of Freebase are provided in Table C.2.
However, note that most relations in Freebase are scarcely used; only 6 760
relations appear in more than 100 facts. Furthermore, the concept of enti-
ties is quite wide in Freebase, in particular it makes use of a concept called
mediator (Chah 2017):

/m/02mjmr /topic/notable_for /g/125920
/g/125920 /c…/notable_for/object /gov…/us_president
/g/125920 /c…/notable_for/predicate /type/object/type

Here /m/02mjmr refers to “Barack Obama,” while /g/125920 is the me-
diator entity which is used to group together several statements about
/m/02mjmr.

https://aclanthology.org/D19-1649
https://aclanthology.org/D19-1649
https://aclanthology.org/D19-1649
https://dl.acm.org/doi/pdf/10.1145/1376616.1376746
https://dl.acm.org/doi/pdf/10.1145/1376616.1376746
https://dl.acm.org/doi/pdf/10.1145/1376616.1376746
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C.4 muc-7 tr
The message understanding conferences (muc) were organized by darpa
in the 1980s and 1990s. The seventh—and last—conference (Chinchor
1998) introduced a relation extraction task called “template relation” (tr). Chinchor, “Overview of muc-7” muc

1998Three relations needed to be extracted: employee of, location of and prod-
uct of. Both the train set and evaluation set contained 100 articles. The
task was very much still in the “template filling” mindset; this can be seen
by the following example of extracted fact:

<employee_of-9602040136-5> :=
person: <entity-9602040136-11>
organization: <entity-9602040136-1>

<entity-9602040136-11> :=
ent_name: "Dennis Gillespie"
ent_type: person
ent_descriptor: "Capt."
/ "the commander of Carrier Air Wing 11"
ent_category: per_mil

<entity-9602040136-1> :=
ent_name: "navy"
ent_type: organization
ent_category: org_govt

C.5 New York Times
The New York Times Annotated Corpus (nyt, Sandhaus 2008) was widely Sandhaus, “The New York Times An-

notated Corpus” ldc 2008used for relation extraction. The full dataset contains 1.8 million articles
from 1987 to 2007; however, smaller—and sadly, different—subsets are in
use. The subset we use in Chapter 3 was first extracted by Marcheggiani
and Titov (2016) and is supposed to be similar—but not identical—to the Marcheggiani and Titov, “Discrete-

State Variational Autoencoders for
Joint Discovery and Factorization of
Relations” tacl 2016

one of Yao et al. (2011). This nyt subset only contains articles from 2000
to 2007 from which “noisy documents” were filtered out. Semi-structured
information such as tables and lists were also removed. The version of the
dataset we received from Diego Marcheggiani was already preprocessed,
with features listed in Section 3.3.2 already extracted.

The original dataset can be obtained from the following website:

https://catalog.ldc.upenn.edu/LDC2008T19

At the time of writing, once the license fee is paid, the only way to
obtain the subset of Marcheggiani and Titov (2016) and Chapter 3 is
through someone with access to this specific subset. This burdensome—
and expensive—procedure is one of the reasons for which we introduced
t-rex-based alternatives in Chapter 3.

C.6 SemEval 2010 Task 8
SemEval is the international workshop on semantic evaluation, which was
started in 1998 (then called Senseval) with the goal of emulating the

https://aclanthology.org/M98-1001
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://aclanthology.org/Q16-1017
https://catalog.ldc.upenn.edu/LDC2008T19
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message understanding conferences (Section C.4). In 2010, eighteen dif-
ferent tasks were evaluated. Task number 8 was relation extraction. Se-
mEval 2010 Task 8 (Hendrickx et al. 2010) therefore refers to the dataset Hendrickx et al., “SemEval-2010 Task

8: Multi-Way Classification of Seman-
tic Relations between Pairs of Nomi-
nals” SemEval 2010

provided at the time of this challenge. It is a supervised relation extrac-
tion dataset without entity linking and with non-unique entity reference
(Section 2.1.2). Its statistics are listed in Table C.3. All samples were hand-

Object Number

Train samples 8 000
Test samples 2 717
Relations 2 × 9 + 1 = 19

Table C.3: Statistics of the Sem-
Eval 2010 Task 8 dataset.

labeled by human annotators with one of 19 relations. These 19 relations
are built from 9 base relations, which can appear in both directions (Sec-
tion 2.1.1.3), plus the other relation (Section 2.1.1.1). The 9 base relations
in the dataset are:

• cause–effect
• instrument–agency
• product–producer
• content–container
• entity–origin
• entity–destination
• component–whole
• member–collection
• message–topic

SemEval 2010 Task 8 introduced an extensive evaluation system, most of
which is described in Section 2.3.1. In particular, the official score of the
competition was the half-directed macro-↼⇁𝐹1 (described in Section 2.3.1)
which was referred to as “9 + 1-way evaluation taking directionality into
account.”

C.7 t-rex
t-rex (Elsahar et al. 2018) is an alignment of Wikipedia with Wikidata. Elsahar et al., “t-rex: A Large Scale

Alignment of Natural Language with
Knowledge Base Triples” lrec 2018

In particular, t-rex uses dbpedia abstracts (Brümmer et al. 2016), that
is, the introductory paragraphs of Wikipedia’s articles. Its statistics are
listed in Table C.4. Object Number

Articles 3 million
Sentences 6.2 million
Facts 11 million
Relations 642

Table C.4: Statistics of the t-rex
dataset.

In the final dataset, entities are linked using the dbpedia spotlight
entity linker (Mendes et al. 2011). Furthermore, indirect entity links are
extracted using coreference resolution and a “NoSub Aligner,” which as-
sumes that the title of the article is implicitly mentioned by all sen-
tences. Finally, some sequences of words are also linked to relations us-
ing exact matches of Wikidata relation names. Both the datasets used in
Chapters 3 and 4 only consider entities extracted by the spotlight entity
linker (tagged Wikidata_Spotlight_Entity_Linker). The two datasets
of Chapter 3 were filtered based on the tag of the predicate. spo only
contains samples whose predicate’s surface form appears in the sentence
(tagged Wikidata_Property_Linker), while ds contains all samples with
the two entities occurring in the same sentence (in other words, all samples
except those tagged NoSubject-Triple-aligner).

C.8 Wikidata
Wikidata (Vrandečić and Krötzsch 2014) is a knowledge base (Section 1.4) Vrandečić and Krötzsch, “Wikidata:

A Free Collaborative Knowledgebase”
cacm 2014

started in 2012. Similar to the other projects of the Wikimedia Foundation,
it is a collaborative enterprise; everyone can contribute new facts and
entities. The introduction of new relations is made through the consensus

https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/S10-1006
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://dl.acm.org/doi/pdf/10.1145/2629489
https://dl.acm.org/doi/pdf/10.1145/2629489
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Douglas Adams (Q42)
English writer and humorist
Douglas Noël Adams | Douglas Noel Adams

Statements
educated at (P69)

• St John’s College (Q691283)
start time (P580) 1971
end time (P582) 1974
academic major (P812) English literature (Q186579)
academic degree (P512) Bachelor of Arts (Q1765120)

• Brentwood School (Q4961791)
start time (P580) 1959
end time (P582) 1970

work location (P937)
• London (Q84)

…

object (“𝑒2”)

subject (“𝑒1”)

relation (“𝑟”)
object (“𝑒2”)

relation (“𝑟”)
object (“𝑒2”)

qualifiers

qualifiers
Figure C.1: Structure of a Wikidata
page. Facts related to two relations are
shown (“statement groups” in Wiki-
data parlance). This page can be trans-
lated into three ℰ2 × ℛ facts; the first
has four additional qualifiers and the
second has two additional qualifiers.

of long-term contributors to avoid the explosion of relations types observed
on Freebase (section C.3).

Contrary to the way knowledge bases are presented in Section 1.4,
Wikidata is not structured as a set of ℰ2×ℛ triplets. Instead, in Wikidata,
all entities have a page that lists facts of which the entity is the subject.
These constitute our set 𝒟kb ⊆ ℰ2 ×ℛ. Furthermore, Wikidata facts can
be qualified by additional ℛ× ℰ pairs. For example, Douglas Adams was
educated at St John’s College until 1974. This structure is illustrated in
Figure C.1. To be more precise, Wikidata could be modeled as a set of
qualified facts, where a qualified fact is an element of ℰ2 ×ℛ× 2ℛ×ℰ.

https://www.wikidata.org/wiki/Q42
https://www.wikidata.org/wiki/Property:P69
https://www.wikidata.org/wiki/Q691283
https://www.wikidata.org/wiki/Property:P580
https://www.wikidata.org/wiki/Property:P582
https://www.wikidata.org/wiki/Property:P812
https://www.wikidata.org/wiki/Q186579
https://www.wikidata.org/wiki/Property:P512
https://www.wikidata.org/wiki/Q1765120
https://www.wikidata.org/wiki/Q4961791
https://www.wikidata.org/wiki/Property:P580
https://www.wikidata.org/wiki/Property:P582
https://www.wikidata.org/wiki/Property:P937
https://www.wikidata.org/wiki/Q84
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