Deep Learning for Unsupervised Relation Extraction

Étienne Simon

5 july 2022

ISIR, Sorbonne Université

Pr. Alexandre Allauzen Université Paris-Dauphine PSL, ESPCI

Dr. Benoît Favre Aix-Marseille Université

Rapporteurs

Pr. Pascale Sébillot IRISA, INSA Rennes

Pr. Xavier Tannier Sorbonne Université

Examinateurs

Dr. Benjamin Piwowarski CNRS, Sorbonne Université

Dr. Vincent Guigue Sorbonne Université

Directeurs

\implies An "otter" entity exists.

 \implies An "otter" entity exists.

\implies An "inside of" relation exists.

 \implies An "otter" entity exists.

\implies An "inside of" relation exists.

Structuralism: interrelations are keys to our understanding of the world.

 \implies An "otter" entity exists.

\implies An "inside of" relation exists.

Structuralism: interrelations are keys to our understanding of the world.

Realism Nominalism

Entities and relations are unproductive concepts. They only capture synonymy.

Information Extraction

Maps between two symbolic representations (text and knowledge bases). Knowledge bases are set of facts: (entity, *relation*, entity) Entity chunking
Paris is the capital of France
Q90 → P1376 ← Q142
Entity
Relation linking

Information Extraction

Maps between two symbolic representations (text and knowledge bases). Knowledge bases are set of facts: (entity, *relation*, entity) Entity chunking
Paris is the capital of France
Q90 → P1376 ← Q142
Entity
Relation
inking

Symbolic Representations

symbol ↔ concept e.g.: one-hot vector, text (Paris is the capital of France), knowledge base (Paris^{q90}, capital^{P1376}, France^{q142})

Distributed Representations

concept \rightarrow several units; unit \rightarrow part of several concepts e.g.: embeddings, neural network activations

 $\frac{\text{Megrez}_{e_1}^{\textbf{Q850779}} \text{ is a star in the northern circumpolar constellation of } \frac{\text{Ursa Major}_{e_2}^{\textbf{Q10460}}.$

 $\frac{\text{Posidonius}_{e_1}^{\mathbf{Q185770}}}{\text{astronomer, historian, mathematician, and teacher native to Apamea, Syria}_{e_2}^{\mathbf{Q617550}}$

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{q}_{159905}}}{\text{Bithynia}_{e_2}^{\mathbf{q}_{739037}}}, \text{ and probably died on the island of Rhodes, Greece.}$

In an **unsupervised** fashion. Two kind of approaches: clustering and similarity function.

 $\frac{\text{Megrez}_{e_1}^{\textbf{Q850779}} \text{ is a star in the northern circum-polar constellation of } \frac{\text{Ursa Major}_{e_2}^{\textbf{Q10460}}.$

<u>Posidonius</u> $_{e_1}^{\mathbf{Q185770}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to <u>Apamea</u>, Syria $_{e_2}^{\mathbf{Q617550}}$.

<u>Hipparchus</u> $_{e_1}^{\mathbf{q_{159905}}}$ was born in <u>Nicaea</u>, <u>Bithynia</u> $_{e_2}^{\mathbf{q_{739037}}}$, and probably died on the island of Rhodes, Greece.

Megrez $e_1^{Q850779}$ is a star in the northern circumpolar constellation of Ursa Major^{Q10460}.

Posidonius $e_{r}^{Q185770}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to Apamea, Syria $e_{e_{2}}^{Q617550}$.

Hipparchus_e. was born in Nicaea, Bithynia (1739037), and probably died on the island of Rhodes, Greece.

 e_1 part of constellation e_2

 e_1 born in e_2

Same cluster ↔ Same relation Induced clusters need **not** be labeled with a relation.

 $\frac{\text{Megrez}_{e_1}^{\textbf{Q850779}} \text{ is a star in the northern circum-}}{\text{polar constellation of Ursa Major}_{e_2}^{\textbf{Q10460}}.$

<u>Posidonius</u> $_{e_1}^{\mathbf{Q185770}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to <u>Apamea</u>, Syria $_{e_2}^{\mathbf{Q617550}}$.

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}}}{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}$

 e_1 born in e_2

 $\frac{\text{Megrez}_{e_1}^{\textbf{Q850779}} \text{ is a star in the northern circum-}}{\text{polar constellation of } \frac{\text{Ursa Major}_{e_2}^{\textbf{Q10460}}}{\text{Major}_{e_2}^{\textbf{Q10460}}}.$

<u>Posidonius</u> $_{e_1}^{Q185770}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to <u>Apamea</u>, Syria $_{e_2}^{Q617550}$.

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}}}{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}$

 $\frac{\text{Megrez}_{e_1}^{\text{Q850779}} \text{ is a star in the northern circum-}}{\text{polar constellation of } \frac{\text{Ursa Major}_{e_2}^{\text{Q10460}}}{\text{Major}_{e_2}^{\text{Q10460}}} \right\} x_1$

 $\underbrace{\frac{\text{Posidonius}_{e_1}^{\mathbf{Q185770}}}{\text{astronomer, historian, mathematician, and}} x_2$

 $\underbrace{ \frac{\text{Hipparchus}_{e_1}^{\mathbf{q_{159905}}}}{\text{Bithynia}_{e_2}^{\mathbf{q_{739037}}}}, \text{ and probably died on the is-}}_{\text{land of Rhodes, Greece.}} x_3$

Learn a similarity function $\operatorname{sim} \colon \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

 $sim(x_1, x_2) < sim(x_2, x_3)$ $sim(x_1, x_3) < sim(x_2, x_3)$

5 way 1 shot: given 1 query and 5 candidates, which of the candidates is most similar to the query? Evaluated using accuracy.

Étienne Simon, Vincent Guigue, Benjamin Piwowarski. "Unsupervised Information Extraction: Regularizing Discriminative Approaches with Relation Distribution Losses" ACL 2019 Part 1

Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Graph-Based Unsuper**vised Relation Extraction" Work in progress Part 2 Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Unsupervised Informa**tion Extraction: Regularizing Discriminative Approaches with Relation Distribution Losses" ACL 2019

- Introduce relation distribution losses
- First to train a deep RE classifier without supervision
- Improve over then SOTA

Part 1

Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Graph-Based Unsuper**vised Relation Extraction" Work in progress Part 2 Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Unsupervised Informa**tion Extraction: Regularizing Discriminative Approaches with Relation Distribution Losses" ACL 2019

- Introduce relation distribution losses
- First to train a deep RE classifier without supervision
- Improve over then SOTA

Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Graph-Based Unsuper-vised Relation Extraction"** Work in progress

- Evaluate the quantity of topological information available
- Explicitly exploit aggregate setup for unsupervised RE
- Draw parallels between WL isomorphism test and unsupervised RE

Part 1

Part 2

Regularizing Discriminative Models

Clustering Approaches

Same cluster \iff Same relation

Induced clusters need **not** be labeled with a relation.

Evaluated using clustering metrics similar to standard F_1 /precision/recall.

- 1. Related work
- 2. Limitation: can't train deep classifier
- 3. Model details
- 4. Analysis of limitation
- 5. Proposed solution
- 6. Results

An LDA-like model:

 $egin{array}{lll} \end{array} heta_d \mbox{ distribution of relations in document } d \ \mathbf{r}_i \mbox{ conveyed relation} \end{array}$

- ϕ_{rj} associate features to relations
- \mathbf{f}_i features:
 - 1. bag of words of the infix;
 - 2. surface form of the entities;
 - 3. lemma words on the dependency path;
 - 4. POS of the infix words;

 $\text{Assume } \mathscr{H}_{\mathsf{BICLIQUE}} : \forall r \in \mathcal{R} : \exists A, B \subseteq \mathcal{E} : r \bullet \check{r} = A^2 \wedge \check{r} \bullet r = B^2$

Problem: Makes large independance assumptions.

A conditional β -VAE:

Autoencode the entities ${f e}$ given the sentence features ${f f}.$

Problem: Still uses hand designed features.

$$\begin{split} \mathcal{L}_{\text{VAE}}(\boldsymbol{\theta}, \boldsymbol{\phi}) &= \mathcal{L}_{\text{reconstruction}}(\boldsymbol{\theta}, \boldsymbol{\phi}) + \mathcal{L}_{\text{VAE REG}}(\boldsymbol{\phi}) \\ \mathcal{L}_{\text{VAE REG}}(\boldsymbol{\phi}) &= \mathrm{D}_{\text{KL}}(Q(\mathbf{r} \mid \mathbf{e}; \boldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R})) \end{split}$$

Assume $\mathscr{H}_{\text{UNIFORM}}$: All relations occur with equal frequency. $\forall r \in \mathcal{R} \colon P(r) = \frac{1}{|\mathcal{R}|}$ Assume $\mathscr{H}_{1 \rightarrow 1}$: All relations are bijective.

 $\forall r \in \mathcal{R} \colon r \bullet \check{r} \cup I = \check{r} \bullet r \cup I = I$

Supervised (old) SOTA: PCNN

Zeng et al. "Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks" EMNLP 2015

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1 V-measure Entropic F_1 ARI Pair of samples consistency

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
rel-LDA rel-LDA1 Linear PCNN	$\mathcal{L}_{ ext{VAE REG}}$ $\mathcal{L}_{ ext{VAE REG}}$	29.1 36.9 35.2 27.6	24.8 30.4 23.8 24.3	35.2 47.0 67.1 31.9	30.0 37.4 27.0 24.7	26.1 31.9 18.6 21.2	35.1 45.1 49.6 29.6	13.3 24.2 18.7 15.7

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1 V-measure Entropic F_1 ARI Pair of samples consistency

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{ ext{VAE REG}} \ \mathcal{L}_{ ext{VAE REG}}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN		27.6	24.3	31.9	24.7	21.2	29.6	15.7

Yao et al. "Structured Relation Discovery using Generative Models" EMNLP 2011

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1 V-measure Entropic F_1 ARI Pair of samples consistency

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
rel-LDA rel-LDA1		29.1 36.9	24.8 30.4	35.2 47.0	30.0 37.4	26.1 31.9	35.1 45.1	13.3 24.2
Linear	$\mathcal{L}_{VAE REG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCININ	$\mathcal{L}_{VAE REG}$	27.0	24.3	31.9	24.7	21.2	29.6	15.7

Marcheggiani and Titov "Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations" TACL 2016

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1 V-measure Entropic F_1 ARI Pair of samples consistency

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{VAE REG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{VAE REG}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7

Problem: Using a deep encoder does not work.

- We introduce a new formalism.
- The encoder and decoder are sub-models performing different tasks.
- The interaction between these two sub-models is problematic.

 \boldsymbol{e}_{-i} missing entity, \boldsymbol{e}_i remaining entity, \boldsymbol{s} conveying sentence

fill-in-the-blank

for
$$i = 1, 2:$$
 $P(e_{-i} \mid s, e_i)$

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1,2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} \qquad \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1,2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

Assume $\mathscr{H}_{\text{BLANKABLE}}$: The relation can be predicted from the text surrounding the two entities alone.

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1,2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

Assume $\mathcal{H}_{\text{BLANKABLE}}$: The relation can be predicted from the text surrounding the two entities alone.

- 1. Train a fill-in-the-blank model on an unsupervised dataset.
- 2. Throw away the entity predictor.
- 3. Use the classifier on new samples.

Hybrid (Marcheggiani and Titov 2016) $\psi(e_1, r, e_2) = \psi_{\text{SP}}(e_1, r, e_2) + \psi_{\text{RESCAL}}(e_1, r, e_2)$ $P(e_1 \mid r, e_2) = \frac{\exp \psi(e_1, r, e_2)}{\sum_{e' \in \mathcal{E}} \exp \psi(e', r, e_2)}$

Selectional Preferences

$$\psi_{\mathrm{SP}}(e_1,r,e_2) = \boldsymbol{u}_{e_1}^{\mathrm{T}}\boldsymbol{a}_r + \boldsymbol{u}_{e_2}^{\mathrm{T}}\boldsymbol{b}_r$$

 $oldsymbol{U} \in \mathbb{R}^{\mathcal{E} imes d}$ entity embeddings $oldsymbol{A}, oldsymbol{B} \in \mathbb{R}^{\mathcal{R} imes d}$ relation embeddings

RESCAL

$$\psi_{\text{RESCAL}}(e_1, r, e_2) = \boldsymbol{u}_{e_1}^{\text{T}} \boldsymbol{C}_r \boldsymbol{u}_{e_2}$$

 $oldsymbol{U} \in \mathbb{R}^{\mathcal{E} imes d}$ entity embeddings $oldsymbol{C} \in \mathbb{R}^{\mathcal{R} imes d imes d}$ relation embeddings

$$\overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$
$$\begin{split} \mathcal{L}_{\mathrm{EP}}(\pmb{\theta},\pmb{\phi}) &= \mathop{\mathbb{E}}_{\substack{(\mathbf{s},\mathbf{e}_{1},\mathbf{e}_{2})\sim\mathcal{U}(\mathcal{D})\\\mathbf{r}\sim\mathsf{PCNN}(\mathbf{s};\pmb{\phi})}} \left[-\log\sigma\left(\psi(\mathbf{e}_{1},\mathbf{r},\mathbf{e}_{2};\pmb{\theta}\right)\right) \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}'\sim\mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log\sigma\left(-\psi(\mathbf{e}_{1},\mathbf{r},\mathbf{e}';\pmb{\theta}\right)\right)\right] \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}'\sim\mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log\sigma\left(-\psi(\mathbf{e}',\mathbf{r},\mathbf{e}_{2};\pmb{\theta}\right)\right)\right] \end{split}$$

$$\begin{split} \mathcal{L}_{\mathrm{EP}}(\boldsymbol{\theta}, \boldsymbol{\phi}) &= \mathop{\mathbb{E}}_{\substack{(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}) \sim \mathcal{U}(\mathcal{D}) \\ \mathbf{r} \sim \mathrm{PCNN}(\mathbf{s}; \boldsymbol{\phi})}} \left[-\log \sigma \left(\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log \sigma \left(-\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}'; \boldsymbol{\theta}) \right) \right] \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) \right] \right] \end{split}$$

→ 1. Take a sample uniformly from the dataset.

$$\begin{split} \mathcal{L}_{\mathrm{EP}}(\boldsymbol{\theta}, \boldsymbol{\phi}) &= \mathop{\mathbb{E}}_{\substack{(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}) \sim \mathcal{U}(\mathcal{D}) \\ \mathbf{r} \sim \mathrm{PCNN}(\mathbf{s}; \boldsymbol{\phi}) }} \left[-\log \sigma \left(\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log \sigma \left(-\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}'; \boldsymbol{\theta}) \right) \right] \\ &- \sum_{j=1}^{k} \mathop{\mathbb{E}}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) \right] \right] \end{split}$$

▶ 1. Take a sample uniformly from the dataset.

ightarrow 2. Sample a relation ${f r}$ from the output of the PCNN classifier.

Source of Low Scores

VAE Model Reminder (Marcheggiani)

$$\begin{split} & \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}} \\ & \mathcal{L}_{\text{VAE REG}}(\phi) = D_{\text{KL}}(Q(\mathbf{r} \mid \mathbf{e}; \phi) \parallel \mathcal{U}(\mathcal{R})) \end{split}$$

Source of Low Scores

VAE Model Reminder (Marcheggiani)

$$\begin{split} & \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \overbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}} \\ & \overbrace{\mathcal{L}_{\text{VAE REG}}(\phi) = D_{\text{KL}}(Q(\mathbf{r} \mid \mathbf{e}; \phi) \parallel \mathcal{U}(\mathcal{R}))}^{\text{classifier}} \end{split}$$

Degenerate distributions:

Desired distributions:

Ensure Confidence

$$\mathcal{L}_{\mathbb{S}}(\boldsymbol{\phi}) = \mathop{\mathbb{E}}_{(\mathbf{s},\mathbf{e})\sim\mathcal{U}(\mathcal{D})}[\mathrm{H}(\mathrm{R}\mid\mathbf{s},\mathbf{e};\boldsymbol{\phi})]$$

The entropy of the relation distribution must be low for each sample.

Distribution Distance Loss

Desired distributions:

Ensure Diversity

$$\mathcal{L}_{\mathsf{D}}(\boldsymbol{\phi}) = \mathrm{D}_{\mathsf{KL}}(P(\mathrm{R} \mid \boldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R}))$$

At the level of the dataset (or mini-batch) the distribution of relations must be uniform.

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
rel-LDA	$\mathcal{L}_{VAE REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\begin{array}{c} \mathcal{L}_{\text{VAE REG}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \end{array}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$ SelfORE	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder		49.1	47.3	51.1	46.6	45.7	47.6	40.3

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{VAE REG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{VAE REG}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$	37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN	$\mathcal{L}_{\rm S} + \mathcal{L}_{\rm D}$	39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\rm S} + \mathcal{L}_{\rm D}$	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder	SelfORE	49.1	47.3	51.1	46.6	45.7	47.6	40.3

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
rel-LDA	$\mathcal{L}_{VAE REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$ \begin{array}{c} \mathcal{L}_{\text{VAE REG}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \end{array} $	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$ SelfORE	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder		49.1	47.3	51.1	46.6	45.7	47.6	40.3

Model		B^3			V-measure			ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1(1
rel-LDA	$\mathcal{L}_{VAE REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$egin{aligned} \mathcal{L}_{ ext{VAE REG}} \ \mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}} \ \mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}} \end{aligned}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$ SelfORE	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder		49.1	47.3	51.1	46.6	45.7	47.6	40.3

Hu et al. "SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction" EMNLP 2020

Take-home Message

Selecting good regularizations to enforce modeling hypotheses enables us to train a deep classifier.

Contributions

- Train a PCNN without supervision
- Designed two regularization losses (Skewness, Distribution distance)
- Introduced new datasets (T-RExes)
- Evaluated using additional metrics (V-measure, ARI)

Étienne Simon, Vincent Guigue, Benjamin Piwowarski. **"Unsupervised Information Extraction: Regularizing Discriminative Approaches with Relation Distribution Losses"** ACL 2019

Graph-based Aggregate Extraction

 $\frac{\text{Megrez}_{e_1}^{\text{Q850779}} \text{ is a star in the northern circum-}}{\text{polar constellation of } \frac{\text{Ursa Major}_{e_2}^{\text{Q10460}}}{\text{Major}_{e_2}^{\text{Q10460}}}} \right\} x_1$

 $\frac{\operatorname{Posidonius}_{e_1}^{\mathbf{Q185770}}}{\operatorname{astronomer,\ historian,\ mathematician,\ and}}x_2$

 $\underbrace{ \frac{\text{Hipparchus}_{e_1}^{\mathbf{q_{159905}}}}{\text{Bithynia}_{e_2}^{\mathbf{q_{739037}}}}, \text{ and probably died on the is-}}_{\text{land of Rhodes, Greece.}} x_3$

Learn a similarity function $\operatorname{sim} \colon \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

 $\begin{array}{l} {\rm sim}(x_1,x_2) < {\rm sim}(x_2,x_3) \\ {\rm sim}(x_1,x_3) < {\rm sim}(x_2,x_3) \end{array}$

5 way 1 shot: given 1 query and 5 candidates, which of the candidates is most similar to the query? Evaluated using accuracy.

Introduction

Sentential approaches: extract sentences' relation independently $(\mathcal{S} \times \mathcal{E}^2 \to \mathcal{R})$ Aggregate approaches: maps a set of sentences to a set of facts $(2^{\mathcal{S} \times \mathcal{E}^2} \to 2^{\mathcal{E}^2 \times \mathcal{R}})$

Goal

Exploit dataset-level regularities to leverage additional information

Plan

- 1. Model datasets as graphs
- 2. Related relation extraction work only uses linguistic similarities
- 3. Proof that topological information can be used
- 4. How topological features are usually extracted (GCN)
- 5. How to extract them differently (WL isomorphism test)
- 6. Experimental results
- 7. Perspective

Related Work: Matching the Blanks (2019)

Prediction

Compare samples using: sim(x, x') = sigmoid(BERTcoder $(x)^{T}$ BERTcoder(x'))

Prediction

Compare samples using: sim(x, x') = sigmoid(BERTcoder $(x)^{T}$ BERTcoder(x'))

Hypotheses

$$\begin{array}{l} \text{MTB assumes:} \\ r_1 = r_2 \left(\mathscr{H}_{\text{1-ADJACENCY}} \right) \\ r_3 \neq r_1 \wedge r_3 \neq r_2 \left(\mathscr{H}_{1 \rightarrow 1} \right) \end{array}$$

The exterior and interior of Freemasons' Hall continued to be a stand-in for $\frac{\text{Thames}}{\text{House}_{e_2}}$, the headquarters of $\frac{\text{MI5}_{e_1}}{\text{MI5}_{e_1}}$.

Golitsyn's claims about Wilson were believed in particular by the senior $\underline{\text{MI5}_{e_1}}$ <u>counterintelligence_{e_2}</u> officer Peter Wright.

In its <u>counter-espionage_{e2}</u> and counter-intelligence roles, \underline{SMERSH}_{e_1} appears to have been extremely successful throughout World War II.

The Freemasons' Hall in London served as the filming location for $\frac{\text{Thames House}_{e_1}}{\text{the headquarters for } \frac{\text{MI5}_{e_2}}{\text{c}_2}}$.

Encoding Relation Extraction as a Multigraph Problem

Encoding Relation Extraction as a Multigraph Problem

Proposition Given the path $e_1 \xrightarrow{r_1} e_2 \xrightarrow{r_2} e_3 \xrightarrow{r_3} e_4$, we expect $r_1 \not\perp r_2 \not\perp r_3$.

Goal

Compute the mutual information $I(r_2;r_1,r_3)$

Proposition

Given the path
$$e_1 \xrightarrow{r_1} e_2 \xrightarrow{r_2} e_3 \xrightarrow{r_3} e_4$$
, we expect $r_1 \not\perp r_2 \not\perp r_3$.

Goal

Compute the mutual information $I(r_2;r_1,r_3)$

Path Counting Algorithm

We can (slowly) sample **walks** using power of the adjacency matrix.

- 1. Sample a walk by chaining neighbors
- 2. Reject non-path
- 3. Count the accepted paths weighted by importance

Modeling Hypothesis

 $\mathscr{H}_{1-\text{NEIGHBORHOOD}}$: Two samples with the same neighborhood in the relation extraction graph convey the same relation.

$$\forall a, a' \in \mathcal{A} \colon \mathcal{N}(a) = \mathcal{N}(a') \implies \rho(a) = \rho(a')$$

Graph Convolutional Network

Compare Topological Features

Skip recoloring, directly compare neighborhoods in \mathbb{R}^d :

S(x,k) =

set of samples at distance k of x

$$\begin{split} \mathfrak{S}(x,k) = \\ \{ \, \mathsf{BERTcoder}(y) \in \mathbb{R}^d \end{split}$$

{ BERTcoder(y) $\in \mathbb{R}^d \mid y \in S(x,k)$ } $\overline{W_1(\mathfrak{S}(x,1),\mathfrak{S}(x',1))}$ algorithm WEISFEILER-LEMAN Inputs: G = (V, E) graph k dimensionality Output: χ_{∞} coloring of k-tuples $\chi_0(\boldsymbol{x}) \leftarrow \mathrm{iso}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in V^k$ for $\ell = 1, 2, ...$ do $\mathfrak{I}_{\ell} \leftarrow$ new color index for all $x \in V^k$ do $c_\ell({m x})$ ($\{\!\!\{ \chi_{\ell-1}(\boldsymbol{y}) \mid \boldsymbol{y} \in N^k(\boldsymbol{x}) \}\!\!\}$ $\chi_{\ell}({m x})$ ($(\chi_{\ell-1}(\boldsymbol{x}), c_{\ell}(\boldsymbol{x}))$ in \mathfrak{I}_{ℓ} until $\chi_{\ell} = \chi_{\ell-1}$ output χ_{ℓ}

Redefining similarity

We keep the **linguistic** similarity from MTB: $sim_{ling}(x, x') = sigmoid (BERTcoder(x)^T BERTcoder(x'))$

But also define a **topological** similarity: Either using GCN: $sim_{topo}^{GCN}(x, x') = sigmoid (GCN(G)_x^T GCN(G)_{x'})$ Or 1-Wasserstein: $sim_{topo}^{W_1}(x, x') = -W_1(\mathfrak{S}(x, 1), \mathfrak{S}(x', 1))$

Define the **topolinguistic** similarity as: $sim_{topoling}(x, x') = sim_{ling}(x, x') + \lambda sim_{topo}(x, x')$

Model Accurac			
Pre-trained			
Linguistic (BERT) Topological (W ₁) Topolinguistic	69.46 65.75 72.18		
Fine-tuned			
MTB MTB GCN–Chebyshev	78.83 76.10		

Few-Shot Evaluation
1 query 5 candidates
Which candidate conveys the same
Random model score 20% accuracy.

Model Accuracy				
Pre-trained				
Linguistic (BERT)	69.46			
Topological (W_1)	65.75			
Topolinguistic	72.18			
Fine-tuned				
MTB	78.83			
MTB GCN–Chebyshev	76.10			

Few-Shot Evaluation 1 query 5 candidates Which candidate conveys the same relation as the query? Random model score 20% accuracy.

Soares et al. "Matching the Blanks: Distributional Similarity for Relation Learning" ACL 2019

Model Accuracy				
Pre-trained				
Linguistic (BERT)	69.46			
Topological (W_1)	65.75			
Topolinguistic	72.18			
Fine-tuned				
MTB	78.83			
MTB GCN–Chebyshev	76.10			

Few-Shot Evaluation
1 query 5 candidates Which candidate conveys the same relation as the query? Random model score 20% accuracy.

Model Accurac			
Pre-trained			
Linguistic (BERT) Topological (W ₁) Topolinguistic	69.46 65.75 72.18		
Fine-tuned			
MTB MTB GCN–Chebyshev	78.83 76.10		

Few-Shot Evaluation
1 query 5 candidates Which candidate conveys the same relation as the query? Random model score 20% accuracy.

Model Accurac			
Pre-trained			
Linguistic (BERT) 69.4 Topological (W_1) 65.7 Topolinguistic 72.1			
Fine-tuned			
MTB MTB GCN–Chebyshev	78.83 76.10		

Few-Shot Evaluation
1 query
5 candidates
Which candidate conveys the same
relation as the query?
Random model score 20% accuracy.

Soares et al. "Matching the Blanks: Distributional Similarity for Relation Learning" ACL 2019

Model Accurac			
Pre-trained			
Linguistic (BERT) Topological (W ₁) Topolinguistic	69.46 65.75 72.18		
Fine-tuned			
MTB MTB GCN–Chebyshev	78.83 76.10		

Take-home Message

Topological information can be leverage for unsupervised relation extraction.

Contributions

- Explicitly modeled the aggregate setup for the unsupervised problem.
- Provided proof on the quality of topological information.
- Proposed an approach to exploit the mutual information between topological and linguistic features.

Several directions still need to be explored.

$$\mathcal{L}_{\rm LT}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \, \zeta + 2 \, \big(\, \sin_{\rm ling}(x_1, x_2) - \sin_{\rm topo}(x_1, x_2) \big)^2 \\ & - \, \big(\, \sin_{\rm ling}(x_1, x_2) - \sin_{\rm topo}(x_1, x_3) \big)^2 \\ & - \, \big(\, \sin_{\rm ling}(x_1, x_3) - \sin_{\rm topo}(x_1, x_2) \big)^2 \end{pmatrix}$$

 \sim

$$\mathcal{L}_{\rm LT}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \, \zeta + 2 \left(\, \sin_{\rm ling}(x_1, x_2) - \sin_{\rm topo}(x_1, x_2) \right)^2 \\ - \left(\, \sin_{\rm ling}(x_1, x_2) - \sin_{\rm topo}(x_1, x_3) \right)^2 \\ - \left(\, \sin_{\rm ling}(x_1, x_3) - \sin_{\rm topo}(x_1, x_2) \right)^2 \end{pmatrix}$$

• Idealy we want to align the two similarities. -

$$\mathcal{L}_{\text{LT}}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \zeta + 2 \left(\sin_{\text{ling}}(x_1, x_2) - \sin_{\text{topo}}(x_1, x_2) \right)^2 \\ - \left(\sin_{\text{ling}}(x_1, x_2) - \sin_{\text{topo}}(x_1, x_3) \right)^2 \\ - \left(\sin_{\text{ling}}(x_1, x_3) - \sin_{\text{topo}}(x_1, x_2) \right)^2 \end{pmatrix}$$

- Idealy we want to align the two similarities. ◄
- However to stabilize the loss we need to use negative samples. -

$$\mathcal{L}_{\text{LT}}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \zeta + 2 \left(\sin_{\text{ling}}(x_1, x_2) - \sin_{\text{topo}}(x_1, x_2) \right)^2 \\ - \left(\sin_{\text{ling}}(x_1, x_2) - \sin_{\text{topo}}(x_1, x_3) \right)^2 \\ - \left(\sin_{\text{ling}}(x_1, x_3) - \sin_{\text{topo}}(x_1, x_2) \right)^2 \end{pmatrix}$$

- Idealy we want to align the two similarities. ◄
- However to stabilize the loss we need to use negative samples. -
- Up to a margin ζ . •

Conclusion

Contributions

Regularizing Discriminative Methods

- Trained a deep (PCNN) classifier.
- Introduced two regularizing losses:
 - A skewness loss to ensure confidence.
 - A distribution distance loss to ensure diversity.
- Improved experimental setup:
 - 2 metrics (V-measure, ARI).
 - 2 datasets (T-RExes).

Graph-based Aggregate Methods

- Explicitly modeled the aggregate setup for the unsupervised problem.
- Provided proof on the quality of topological information.
- Proposed an approach to exploit the mutual information between topological and linguistic features.

Short-term

- Replace uniform assumption with Zipf-like distribution.
- Masking neighbors to enforce an information bottleneck.
- Make soft-positives stronger in triplet loss.
- Data distribution problem of graph-based models.

Long-term

- Using language modeling for relation extraction.
- Dataset-level modeling hypotheses.
- Complex relations:
 - *n*-ary relations,
 - fact qualifiers.

Questions?

Supplementary Material

$\mathcal{H}_{\mathsf{DISTANT}}$

A sentence conveys all the possible relations between all the entities it contains.

 $\mathcal{D}_{\mathcal{R}} = \mathcal{D} \bowtie \mathcal{D}_{\mathrm{KB}}$ where \bowtie denotes the natural join operator:

$$\mathcal{D} \bowtie \mathcal{D}_{\mathrm{KB}} = \left\{ \, (s, e_1, e_2, r) \mid (s, e_1, e_2) \in \mathcal{D} \land (e_1, e_2, r) \in \mathcal{D}_{\mathrm{KB}} \, \right\}.$$

- 1. the bag of words of the infix;
- 2. the surface form of the entities;
- 3. the lemma words on the dependency path;
- 4. the POS of the infix words;
- 5. the type of the entity pair (e.g. person-location);
- 6. the type of the head entity (e.g. person);
- 7. the type of the tail entity (e.g. location);
- 8. the words on the dependency path between the two entities.

$$\begin{split} \mathbf{B}^{3}\operatorname{precision}(g,c) &= \mathop{\mathbb{E}}_{\mathbf{X},\mathbf{Y}\sim\mathcal{U}(\mathcal{D}_{\mathcal{R}})} P(g(\mathbf{X}) = g(\mathbf{Y}) \mid c(\mathbf{X}) = c(\mathbf{Y})) \\ \mathbf{B}^{3}\operatorname{recall}(g,c) &= \mathop{\mathbb{E}}_{\mathbf{X},\mathbf{Y}\sim\mathcal{U}(\mathcal{D}_{\mathcal{R}})} P(c(\mathbf{X}) = c(\mathbf{Y}) \mid g(\mathbf{X}) = g(\mathbf{Y})) \\ \mathbf{B}^{3}F_{1}(g,c) &= \frac{2}{\mathbf{B}^{3}\operatorname{precision}(g,c)^{-1} + \mathbf{B}^{3}\operatorname{recall}(g,c)^{-1}} \end{split}$$

$$\begin{split} &\text{homogeneity}(g,c) = 1 - \frac{\text{H}\left(c(\mathbf{X}) \mid g(\mathbf{X})\right)}{\text{H}\left(c(\mathbf{X})\right)} \\ &\text{completeness}(g,c) = 1 - \frac{\text{H}\left(g(\mathbf{X}) \mid c(\mathbf{X})\right)}{\text{H}\left(g(\mathbf{X})\right)} \\ &\text{V-measure}(g,c) = \frac{2}{\text{homogeneity}(g,c)^{-1} + \text{completeness}(g,c)^{-1}} \end{split}$$

$$\begin{split} \mathsf{Rl}(g,c) &= \mathop{\mathbb{E}}_{\mathbf{X},\mathbf{Y}} \left[P(c(\mathbf{X}) = c(\mathbf{Y}) \Leftrightarrow g(\mathbf{X}) = g(\mathbf{Y})) \right] \\ \mathsf{ARl}(g,c) &= \frac{\mathsf{Rl}(g,c) - \mathop{\mathbb{E}}_{c \sim \mathcal{U}(\mathcal{R}^{\mathcal{D}})} [\mathsf{Rl}(g,c)]}{\max_{c \in \mathcal{R}^{\mathcal{D}}} \mathsf{Rl}(g,c) - \mathop{\mathbb{E}}_{c \sim \mathcal{U}(\mathcal{R}^{\mathcal{D}})} [\mathsf{Rl}(g,c)]} \end{split}$$

$$\pi_r = \frac{(\exp(y_r) + \mathbf{G}_r) \mathrel{/} \tau}{\sum_{r' \in \mathcal{R}} (\exp(y_{r'}) + \mathbf{G}_{r'}) \mathrel{/} \tau}$$

Confidence	B^3		V-measure			ARI	
Connactice	F_1	Prec.	Rec.	F_1	Hom.	Comp.	7 (1)
\mathcal{L}_{S} regularization Gumbel–Softmax	39.4 35.0	32.2 29.9	50.7 42.2	38.3 33.2	32.2 28.3	47.2 40.2	33.8 25.1

$$P(\mathbf{r}=r \mid s, \boldsymbol{e}; \boldsymbol{\theta}, \boldsymbol{\phi}) = P(\mathbf{r}_s=r \mid s; \boldsymbol{\phi})P(\mathbf{r}_e=r \mid \boldsymbol{e}; \boldsymbol{\theta})$$

$$\mathcal{L}_{\text{ALIGN}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\log \sum_{r \in \mathcal{R}} P(r \mid s, \boldsymbol{e}; \boldsymbol{\theta}, \boldsymbol{\phi}) + \mathcal{L}_{\text{D}}(\boldsymbol{\theta}) + \mathcal{L}_{\text{D}}(\boldsymbol{\phi}).$$

Model	B^3			V-measure			ARI
11100101	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
$\mathcal{L}_{\text{EP}} + \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}}$	39.4	32.2	50.7	38.3	32.2	47.2	33.8
\mathcal{L}_{ALIGN} average	37.6	30.3	49.7	39.4	33.1	48.8	20.3
\mathcal{L}_{ALIGN} maximum	41.2	33.6	53.4	43.5	36.9	53.1	29.5
\mathcal{L}_{ALIGN} minimum	34.5	26.5	49.3	35.9	29.6	45.7	15.3

GCN Spatial & Spectral

Spectral (convolution is multiplication in Fourier space)

	Graph	Euclidean
Laplacian	L = D - M	∇^2
\hookrightarrow Eigenfunctions	s $oldsymbol{U}$ s.t. $oldsymbol{L}=oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^{-1}$	$\xi \mapsto e^{2\pi i \xi x}$
Fourier transform	$\boldsymbol{U}^{\!\!T}\boldsymbol{f}$	$\mathscr{F}(f) = \int_{-\infty}^{\infty} f(x) e^{2\pi i \xi x} \mathrm{d}x$
Convolution	$oldsymbol{U}(oldsymbol{U}^{T}oldsymbol{w}oldsymbol{U}^{T}oldsymbol{f})$	$\mathscr{F}^{-1}(\mathscr{F}(w)\widetilde{\mathscr{F}}(f))$

Spatial

$$\operatorname{GCN}(\boldsymbol{X}; \boldsymbol{W})_{v} = \operatorname{ReLU}\left(\frac{1}{|N(v)|} \sum_{n_{i} \in N(v)} \boldsymbol{W} \boldsymbol{X}_{n_{i}}\right)$$

Emergency Otter

